
Package: kindisperse (via r-universe)
October 21, 2024

Title Simulate and Estimate Close-Kin Dispersal Kernels

Version 0.10.3

Description Functions for simulating and estimating kinship-related
dispersal. Based on the methods described in M. Jasper, T.L.
Schmidt., N.W. Ahmad, S.P. Sinkins & A.A. Hoffmann (2019)
<doi:10.1111/1755-0998.13043> ``A genomic approach to inferring
kinship reveals limited intergenerational dispersal in the
yellow fever mosquito''. Assumes an additive variance model of
dispersal in two dimensions, compatible with Wright's
neighbourhood area. Simple and composite dispersal simulations
are supplied, as well as the functions needed to estimate
parent-offspring dispersal for simulated or empirical data, and
to undertake sampling design for future field studies of
dispersal. For ease of use an integrated Shiny app is also
included.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

URL https://github.com/moshejasper/kindisperse

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Suggests testthat, knitr, rmarkdown

Imports ggplot2, readr, shiny, shinythemes, ggrepel, LaplacesDemon,
here, stats, methods, tibble, grid, magrittr, dplyr, rlang,
tidyselect, stringr

VignetteBuilder knitr

Depends R (>= 2.10)

Collate 'DispersalModel.R' 'KinPairData.R' 'dispersal_model.R'
'KinPairSimulation.R' 'app.R' 'app_ports.R'
'axial_helper_functions.R' 'axials_standard.R' 'data.R'
'export_functions.R' 'import_kinpairs.R'
'kindisperse-package.R' 'sample_kindist.R' 'simgraph_data.R'

1

https://doi.org/10.1111/1755-0998.13043
https://github.com/moshejasper/kindisperse

2 Contents

'simgraph_graph.R' 'simulate_kindist_composite.R'
'simulate_kindist_custom.R' 'simulate_kindist_simple.R'

Repository https://moshejasper.r-universe.dev

RemoteUrl https://github.com/moshejasper/kindisperse

RemoteRef HEAD

RemoteSha 6a9cb4b59d881418aa271d42785d02abc0b5a9cd

Contents
access_sigmas . 3
axials . 5
axials_add . 6
axials_combine . 7
axials_decompose . 7
axials_standard . 8
axials_subtract . 12
axpermute . 13
axpermute_standard . 14
axpermute_subtract . 18
breeding_cycle . 19
breeding_stage . 20
check_valid_kinship . 20
check_valid_lifestage . 21
csv_to_kinpair . 21
df_to_kinpair . 22
DispersalModel-class . 23
dispersal_model . 26
dispersal_vector . 29
display_appdata . 30
distances . 30
elongate . 31
filtertype . 32
filter_methods . 32
fs . 34
get_dispersal_model . 35
hs . 36
is.DispersalModel . 36
is.KinPairData . 37
is.KinPairSimulation . 37
kernelshape . 38
kerneltype . 38
KinPairData-class . 39
KinPairSimulation-class . 41
KinPairSimulation_composite . 44
KinPairSimulation_custom . 45
KinPairSimulation_simple . 47

access_sigmas 3

kinpair_to_csv . 48
kinpair_to_tibble . 49
kinpair_to_tsv . 49
kinship . 50
kin_pair_data . 51
kin_pair_simulation . 51
lifestage . 53
mentari . 54
mount_appdata . 55
read_kindata . 56
rebase_dims . 56
reset_appdata . 57
reset_tempdata . 58
retrieveall_appdata . 58
retrieve_appdata . 59
retrieve_tempdata . 60
run_kindisperse . 61
sample_kindist . 61
sampling_stage . 63
simdims . 64
simgraph_data . 65
simgraph_graph . 66
simtype . 67
simulate_kindist_composite . 68
simulate_kindist_custom . 70
simulate_kindist_simple . 73
stages . 75
tsv_to_kinpair . 76
unmount_appdata . 77
vector_to_kinpair . 78
visible_stage . 78
write_kindata . 79

Index 80

access_sigmas Access or assign dispersal sigmas of KinPairSimulation objects

Description

These generics & methods work with KinPairSimulation objects to access & modify infor-
mation about the dispersal sigma parameters that define the stored simulation. The posigma()
method accesses the single dispersal parameter stored in a simulation with simtype == "simple".
The remaining parameters access the dispersal parameters stored in a simulation with simtype ==
"composite". The dispersal kernel sigma parameters of simtype == "custom" simulations are not
yet implemented here. Assignment operations currently only exist as generics (they are not yet
applied to the KinPairSimulation class).

4 access_sigmas

Usage

posigma(x)

posigma(x) <- value

initsigma(x)

initsigma(x) <- value

breedsigma(x)

breedsigma(x) <- value

gravsigma(x)

gravsigma(x) <- value

ovisigma(x)

ovisigma(x) <- value

S4 method for signature 'KinPairSimulation'
posigma(x)

S4 method for signature 'KinPairSimulation'
initsigma(x)

S4 method for signature 'KinPairSimulation'
breedsigma(x)

S4 method for signature 'KinPairSimulation'
gravsigma(x)

S4 method for signature 'KinPairSimulation'
ovisigma(x)

Arguments

x object of class KinPairSimulation

value new value to assign

KinPairSimulation

object of class KinPairSimulation

Value

numeric value of specified sigma parameter or modified KinPairSimulation object

axials 5

Functions

• posigma(KinPairSimulation):

• initsigma(KinPairSimulation):

• breedsigma(KinPairSimulation):

• gravsigma(KinPairSimulation):

• ovisigma(KinPairSimulation):

See Also

Other kpsmethods: filter_methods, kernelshape(), kerneltype(), simtype()

axials Estimate the axial dispersal distance of a kernel

Description

This function performs a basic estimation of axial dispersal for a numeric vector of distances be-
tween close kin dyads. The axial dispersal distance returned is interpretable as the standard devia-
tion of one dimension of a symmetric bivariate random distribution centred on zero.

Usage

axials(valvect, composite = 1)

Arguments

valvect A numeric vector of distances between close kin OR an object of class KinPairData

composite numeric. The number of separate ’draws’ (dispersal events) from the kernel re-
quired to produce the final positions of the measured individuals. For example,
the displacement of a child from parent at the same lifestage would involve 1
draw and thus be composite = 1. Two full siblings would be two draws (com-
posite = 2) from the FS kernel. Non-symmetric relationships (e.g. AV, 1C)
should not be decomposed using this method, nor should any assumptions be
made about different kernels (e.g. the 1C relationship would appropriately be
given the value 2, but not 4)

Value

Returns the value of the estimated axial dispersal distance of the kernel producing the dispersal
distances measured. (numeric)

See Also

Other axial_helpers: axials_add(), axials_decompose(), axials_subtract(), axpermute(),
axpermute_subtract()

6 axials_add

Examples

po_dists <- c(5, 6, 7.5)
axials(po_dists) # one 'draw' (dispersal event) goes into the parent offspring category
so composite is left to its default of 1

fs_dists <- c(2, 3, 3)
axials(fs_dists, composite = 2) # two 'draws' (symmetric dispersal events)
go into the full sibling category so composite is set to 2

axials_add Add axial distributions

Description

Add axial distributions. Useful to construct an overall distribution that results from multiple ’draws’
from smaller distributions. E.g. The pathway between first cousins which can be found by adding
each of the component distributions of their respective lifespans along with the relevant offspring
producing (e.g. oviposition) of the parent.

Usage

axials_add(axvals)

Arguments

axvals numeric. vector of axial distribution values from different kernels that are to be
added.

Value

numeric Returns the axial value that results from adding the input axial values under an additive
variance framework.

See Also

Other axial_helpers: axials(), axials_decompose(), axials_subtract(), axpermute(), axpermute_subtract()

Examples

fullsibs_ax <- 5
parent_offspring_ax <- 25
cousin_ax <- axials_add(c(fullsibs_ax, parent_offspring_ax))

axials_combine 7

axials_combine Combine axial distributions to produce a mixed distribution

Description

combines axial distributions to produce a mixed distribution. This is useful in settings where you
have two separate distributions (e.g. FS & HS) with their own axial values, but you want to average
them appropriately so that they can be compared to e.g. a mixed distribution of full & half cousins
which cannot be distinguished via kinship determination methods and thus are best treated as an
even mixture of the two categories. Different to adding dispersal events.

Usage

axials_combine(axvals)

Arguments

axvals numeric. vector of axial distribution values from different kernels that are to be
combined

Value

numeric Returns the axial value that results from combining the input axial values under an additive
variance framework.

Examples

fullax <- axials(c(2, 4, 5), composite = 2)
halfax <- axials(c(6, 5, 7), composite = 2)
sibax <- axials_combine(c(fullax, halfax))

axials_decompose Decompose an axial distribution into simple components

Description

Decomposes an axial distribution into simple components. Note that this should only be used in the
simplest situations. It assumes all composite dispersal events are of identical magnitude and have
happened equivalently to both branches of a ’symmetric’ pedigree leading to the final kin dyad.
(it can be used to derive e.g.full-sibling dispersal parameters from the distribution of full-siblings,
or equivalent for first cousins, but not to divide the ’avuncular’ kernel into its component parts
(uncle/aunt & niece/nephew have different dispersal paths from their common ancestor)).

Usage

axials_decompose(ax, n_composites = 2)

8 axials_standard

Arguments

ax numeric. The axial value to be decomposed.

n_composites numeric. The number of separate ’draws’ (dispersal events) from the kernel re-
quired to produce the final positions of the measured individuals. For example,
the displacement of a child from parent at the same life stage would involve 1
draw and thus be composite = 1. Two full siblings would be two draws (compos-
ite = 2) from the FS kernel. Non-symmetric relationships (e.g. AV, 1C) should
not be decomposed using this method, nor should any assumptions be made
about different kernels (e.g. the 1C relationship would appropriately be given
the value 2, but not 4)

Value

Returns the (numeric) axial distribution value of the underlying dispersal kernel from which the
composite kernel was (or could be) created.

See Also

Other axial_helpers: axials(), axials_add(), axials_subtract(), axpermute(), axpermute_subtract()

Examples

fs_vect <- c(10, 11, 12)
fs_axial_raw <- axials(fs_vect, composite = 1) # composite hasn't corrected for two dispersal events
inherent to this kin category!
fs_axial_final <- axials_decompose(fs_axial_raw, n_composites = 2)

axials_standard Calculate the intergenerational (PO) dispersal kernel from the distri-
butions of close kin

Description

This function takes (at least) two vectors of kinship dispersal distances from defined kinship cat-
egories, and returns a resulting calculation of the parent-offspring (intergenerational) kinship dis-
persal kernel. Dispersal distances can be inputted as numeric vectors, or alternatively as objects of
classes KinPairData or KinPairSimulation.

Usage

axials_standard(
avect,
bvect,
acat = NULL,
bcat = NULL,
amix = FALSE,
bmix = FALSE,

axials_standard 9

amixcat = NULL,
bmixcat = NULL,
acomp = FALSE,
bcomp = FALSE,
acompvect = NULL,
bcompvect = NULL,
acompcat = NULL,
bcompcat = NULL,
acycle = NULL,
bcycle = NULL,
amixcycle = NULL,
bmixcycle = NULL,
acompcycle = NULL,
bcompcycle = NULL,
override = FALSE

)

Arguments

avect vector a of kin dispersal distances for the less closely related kinship category
OR object of class KinPairData.

bvect vector b of kin dispersal distances for the more closely related kinship category
OR object of class KinPairData.

acat kinship category of kin dispersal vector avect. Must be one of "PO", "FS", "HS",
"AV", "GG", "HAV", "GGG", "1C", "1C1", "2C", "GAV", "HGAV", "H1C",
"H1C1", "H2C"

bcat kinship category of kin dispersal vector bvect. Must be one of "PO", "FS", "HS",
"AV", "GG", "HAV", "GGG", "1C", "1C1", "2C", "GAV", "HGAV", "H1C",
"H1C1", "H2C"

amix logical describing whether vector a is a mixture of two kinship categories. Used
with amixcat. Default FALSE.

bmix logical describing whether vector b is a mixture of two kinship categories. Used
with bmixcat. Default FALSE.

amixcat mixture kinship category of vector a. Must be set if amix == TRUE. Must be one
of "PO", "FS", "HS", "AV", "GG", "HAV", "GGG", "1C", "1C1", "2C", "GAV",
"HGAV", "H1C", "H1C1", "H2C"

bmixcat mixture kinship category of vector b. Must be set if bmix == TRUE. Must be
one of "PO", "FS", "HS", "AV", "GG", "HAV", "GGG", "1C", "1C1", "2C",
"GAV", "HGAV", "H1C", "H1C1", "H2C"

acomp logical denoting whether vector a should be composited with an additional kin-
ship category vector. Used with acompvect and acompcat. Default FALSE.

bcomp logical denoting whether vector b should be composited with an additional kin-
ship category vector. Used with bcompvect and bcompcat. Default FALSE.

acompvect vector acomp of kin dispersal distances for compositing with vector a OR object
of class KinPairData. Must be set if acomp == TRUE.

10 axials_standard

bcompvect vector bcomp of kin dispersal distances for compositing with vector b OR object
of class KinPairData. Must be set if bcomp == TRUE.

acompcat kinship category of kin dispersal vector acompvect. Must be set if acomp ==
TRUE. Must be one of "PO", "FS", "HS", "AV", "GG", "HAV", "GGG", "1C",
"1C1", "2C", "GAV", "HGAV", "H1C", "H1C1", "H2C"

bcompcat kinship category of kin dispersal vector bcompvect. Must be set if bcomp ==
TRUE. Must be one of "PO", "FS", "HS", "AV", "GG", "HAV", "GGG", "1C",
"1C1", "2C", "GAV", "HGAV", "H1C", "H1C1", "H2C"

acycle breeding cycle number of kin dispersal vector avect. Must be a nonnegative
integer. (0, 1, 2, ...). Represents the number of complete breeding cycles the
sampled individual has undergone before the checkpoint, where the time be-
tween birth and first reproduction is coded as ’0’, that between first and second
reproduction ’1’, etc. (default 0). Only use in spp. where there is likely to be a
reasonable equivalence between breeding stages across a lifespan.

bcycle breeding cycle number of kin dispersal vector bvect. Must be a nonnegative
integer. (0, 1, 2, ...). Represents the number of complete breeding cycles the
sampled individual has undergone before the checkpoint, where the time be-
tween birth and first reproduction is coded as ’0’, that between first and second
reproduction ’1’, etc. (default 0). Only use in spp. where there is likely to be a
reasonable equivalence between breeding stages across a lifespan

amixcycle breeding cycle number of kin dispersal vector amixvect. Must be a nonnega-
tive integer. (0, 1, 2, ...). Represents the number of complete breeding cycles
the sampled individual has undergone before the checkpoint, where the time be-
tween birth and first reproduction is coded as ’0’, that between first and second
reproduction ’1’, etc. (default 0). Only use in spp. where there is likely to be a
reasonable equivalence between breeding stages across a lifespan

bmixcycle breeding cycle number of kin dispersal vector bmixvect. Must be a nonnega-
tive integer. (0, 1, 2, ...). Represents the number of complete breeding cycles
the sampled individual has undergone before the checkpoint, where the time be-
tween birth and first reproduction is coded as ’0’, that between first and second
reproduction ’1’, etc. (default 0). Only use in spp. where there is likely to be a
reasonable equivalence between breeding stages across a lifespan.

acompcycle breeding cycle number of kin dispersal vector acompvect. Must be a nonnega-
tive integer. (0, 1, 2, ...). Represents the number of complete breeding cycles
the sampled individual has undergone before the checkpoint, where the time be-
tween birth and first reproduction is coded as ’0’, that between first and second
reproduction ’1’, etc. (default 0). Only use in spp. where there is likely to be a
reasonable equivalence between breeding stages across a lifespan.

bcompcycle breeding cycle number of kin dispersal vector bcompvect. Must be a nonneg-
ative integer. (0, 1, 2, ...). Represents the number of complete breeding cycles
the sampled individual has undergone before the checkpoint, where the time be-
tween birth and first reproduction is coded as ’0’, that between first and second
reproduction ’1’, etc. (default 0). Only use in spp. where there is likely to be a
reasonable equivalence between breeding stages across a lifespan.

override whether or not to override the default -1 cycle compatibility check (default
FALSE) override in situations where you are confident e.g. a c(-1, -1) cycle FS

axials_standard 11

or HS category is truly zeroed (& thus separated from later stages by a complete
lifespan)

Details

This (with its paired function axpermute_standard) are the core functions implemented in the
kindisperse package. They enable the decomposition of the pedigree & dispersal information con-
tained in the sampled distributions of close kin dyads (full siblings, first cousins, etc.) & its leverag-
ing within an additive dispersal framework to estimate the key intergenerational (parent-offspring)
dispersal parameter of a population. Four key ideas underpin the approach in this function: (a)
tracing dispersal pedigrees to determine the number of complete intergenerational (breeding-cycle-
spanning) dispersal events separating the sampled close-kin dyads; (b) using kin categories that
share the same overarching kinship ’phase’ to control for residual ’phased’ (non-intergenerational)
disperal events that occur at the pedigree branch point (e.g. ovipositional dispersal for full sibling
mosquitoes), and (c) using synced or equivalent sampling points to eliminate non-intergenerational
dispersal at the branch-tips of the pedigrees, then finally (d) decomposing the ’pure’ pedigree-
associated (intergenerational) dispersal into an estimae of the single-generation intergenerational
dispersal parameter.

At its most basic, this function requires information about two dispersal vectors, a & b - both of a
phased kinship category, & vector a having a more dispersed pedigree than vector b. In addition
to this initial pair of dispersed kin categories, either one or another matched pair of kin categories
can be added:

1. A mixture category. This redefines the vector it is paired with (either a or b) so that rather
than being considered as a ’pure’ pedigree variant, it is considered as mixed with a different
kin category, often of a differing pedigree phase. If used, the other initial vector must also be
paired with a related mixture category or composite vector.

2. A composite dispersal vector. This is defined exactly as the initial dispersal vectors. After
calculation, the axial value found is composited with that of the matched initial vector, and
its kinship category redefined as a mixture category as above. If used, the other initial vector
must also be paired with a related mixture category or composite vector. These can be paired
so that a mixture category (e.g. first & half-first cousins where these could not be separated
with available genetic data) can be counterbalanced with the composition of full sibling &
half-sibling dyads, which (assuming equal mixture) approximately controls for the phasing
of the mixed kin categories, enabling an estimate of intergenerational dispersal without exact
knowledge of the composition of the cousins distribution.

Each vector or KinPairData / KinPairSimulation object is paired with several other parameters:
(1) a logical (e.g. amix delineating whether the category is being used in the calculation, (2) a
category parameter (.e.g acat) defining what kin relationship is being measured, (3) an optional
breeding cycle number (e.g. acycle) showing the number of breeding cycles each member of the
kin pair has passed through before being sampled (the cycle vector c(1, 0) corresponds to an adult
& a juvenile being sampled at the same point in the breeding cycle; c(1, 1) represents two adults
(i.e. after their first breeding), etc.) . If a KinPairData or KinPairSimulation object is inputted,
all paired parameters that are not explicitly set will default to those contained in the objects (using
KinPair objects is the ideal way to deploy this function).

For further information on this function, package & the dispersal estimation method it represents,
see the paper by Jasper et al. - "A genomic approach to inferring kinship reveals limited intergener-
ational dispersal in the yellow fever mosquito", doi:10.1111/17550998.13043.

https://doi.org/10.1111/1755-0998.13043

12 axials_subtract

Value

Returns a numeric estimate of PO (intergenerational) dispersal kernel axial distribution.

See Also

Other axstandard: axpermute_standard()

Examples

cous <- rexp(100, 1 / 100)
fullsibs <- rexp(50, 1 / 50)
axials_standard(cous, fullsibs, acat = "1C", bcat = "FS")

axials_subtract Subtract axial distributions

Description

Subtract axial distributions, finding the difference (under an additive variance framework). This
is most useful when one distribution subsumes another and includes a unique dispersal event that
needs to be extracted. For example, the FS category is subsumed by the 1C category, which can be
written ’FS + PO’. In this circumstance, subtracting FS from 1C will yield an estimate of the PO
kernel (the basic intergenerational dispersal kernel)

Usage

axials_subtract(abig, asmall)

Arguments

abig numeric. The axial dispersal distance of the larger (subsuming) distribution (e.g.
1C).

asmall numeric. The axial dispersal distance of the smaller (subsumed) distribution
(e.g. FS).

Value

numeric Returns an estimate of the axial dispersal distance of those dispersal elements that are
unique to the larger dispersal distribution (e.g. PO).

See Also

Other axial_helpers: axials(), axials_add(), axials_decompose(), axpermute(), axpermute_subtract()

Examples

axials_subtract(100, 70)

axpermute 13

axpermute Estimate the axial dispersal distance of a kernel with confidence inter-
vals

Description

This function performs an estimation of axial dispersal for a numeric vector of distances between
close kin dyads with confidence intervals. The axial dispersal distance returned is interpretable
as the standard deviation of one dimension of a symmetric bivariate random distribution centred
on zero. Confidence intervals are assigned via bootstrapping, or optionally the vector of all boot-
strapped results can be outputted by setting output to 'vect', enabling its passing to other func-
tions or external statistical analysis.

Usage

axpermute(vals, nreps = 1000, nsamp = "std", composite = 1, output = "confs")

Arguments

vals numeric. Vector of distances between close kin OR object of class KinPairData.
nreps numeric. Number of permutations to run for confidence intervals (default 1000)
nsamp numeric. Number of kin pairs to subsample for each permutation. Either "std"

or an integer. If "std" will be computed as equal to the sample size. (default
"std")

composite numeric. The number of separate ’draws’ (dispersal events) from the kernel re-
quired to produce the final positions of the measured individuals. For example,
the displacement of a child from parent at the same lifestage would involve 1
draw and thus be composite = 1. Two full siblings would be two draws (com-
posite = 2) from the FS kernel. Non-symmetric relationships (e.g. AV, 1C)
should not be decomposed using this method, nor should any assumptions be
made about different kernels (e.g. the 1C relationship would appropriately be
given the value 2, but not 4)

output character. Denotes what kind of output to return. If ’confs’, a vector of 95%
confidence intervals. if ’vect’, a vector of all permuted axial value results

Value

If ouput = ’confs’, returns a numeric vector of 95% confidence intervals and mean axial value. if
output = ’vect’, returns a numeric vector of all permuted axial value results

See Also

Other axial_helpers: axials(), axials_add(), axials_decompose(), axials_subtract(), axpermute_subtract()

Examples

po_dists <- rexp(100, 1 / 50)
axpermute(po_dists, composite = 1)

14 axpermute_standard

axpermute_standard Calculate the intergenerational (PO) dispersal kernel from the distri-
butions of close kin (bootstrapped)

Description

This function takes (at least) two vectors of kinship dispersal distances from defined kinship cate-
gories, and returns a resulting calculation of the parent-offspring (intergenerational) kinship disper-
sal kernel with bootstrapped confidence intervals. Dispersal distances can be inputted as numeric
vectors, or alternatively as objects of classes KinPairData or KinPairSimulation.

Usage

axpermute_standard(
avect = NULL,
bvect = NULL,
acat = NULL,
bcat = NULL,
nreps = 1000,
nsamp = "std",
amix = FALSE,
bmix = FALSE,
amixcat = NULL,
bmixcat = NULL,
acomp = FALSE,
bcomp = FALSE,
acompvect = NULL,
bcompvect = NULL,
acompcat = NULL,
bcompcat = NULL,
acycle = NULL,
bcycle = NULL,
amixcycle = NULL,
bmixcycle = NULL,
acompcycle = NULL,
bcompcycle = NULL,
output = "confs",
override = FALSE

)

Arguments

avect vector a of kin dispersal distances for the less closely related kinship category
OR object of class KinPairData.

bvect vector b of kin dispersal distances for the more closely related kinship category
OR object of class KinPairData.

axpermute_standard 15

acat kinship category of kin dispersal vector avect. Must be one of "PO", "FS", "HS",
"AV", "GG", "HAV", "GGG", "1C", "1C1", "2C", "GAV", "HGAV", "H1C",
"H1C1", "H2C"

bcat kinship category of kin dispersal vector bvect. Must be one of "PO", "FS", "HS",
"AV", "GG", "HAV", "GGG", "1C", "1C1", "2C", "GAV", "HGAV", "H1C",
"H1C1", "H2C"

nreps number of permutations to run for confidence intervals (default 1000)

nsamp number of kin pairs to subsample for each permutation. Either "std" or an inte-
ger. If "std" will be computed as equal to the sample size. (default "std")

amix logical describing whether vector a is a mixture of two kinship categories. Used
with amixcat. Default FALSE.

bmix logical describing whether vector b is a mixture of two kinship categories. Used
with bmixcat. Default FALSE.

amixcat mixture kinship category of vector a. Must be set if amix == TRUE. Must be one
of "PO", "FS", "HS", "AV", "GG", "HAV", "GGG", "1C", "1C1", "2C", "GAV",
"HGAV", "H1C", "H1C1", "H2C"

bmixcat mixture kinship category of vector b. Must be set if bmix == TRUE. Must be
one of "PO", "FS", "HS", "AV", "GG", "HAV", "GGG", "1C", "1C1", "2C",
"GAV", "HGAV", "H1C", "H1C1", "H2C"

acomp logical denoting whether vector a should be composited with an additional kin-
ship category vector. Used with acompvect and acompcat. Default FALSE.

bcomp logical denoting whether vector b should be composited with an additional kin-
ship category vector. Used with bcompvect and bcompcat. Default FALSE.

acompvect vector acomp of kin dispersal distances for compositing with vector a OR object
of class KinPairData. Must be set if acomp == TRUE.

bcompvect vector bcomp of kin dispersal distances for compositing with vector b OR object
of class KinPairData. Must be set if bcomp == TRUE.

acompcat kinship category of kin dispersal vector acompvect. Must be set if acomp ==
TRUE. Must be one of "PO", "FS", "HS", "AV", "GG", "HAV", "GGG", "1C",
"1C1", "2C", "GAV", "HGAV", "H1C", "H1C1", "H2C"

bcompcat kinship category of kin dispersal vector bcompvect. Must be set if bcomp ==
TRUE. Must be one of "PO", "FS", "HS", "AV", "GG", "HAV", "GGG", "1C",
"1C1", "2C", "GAV", "HGAV", "H1C", "H1C1", "H2C"

acycle breeding cycle number of kin dispersal vector avect. Must be a nonnegative
integer. (0, 1, 2, ...). Represents the number of complete breeding cycles the
sampled individual has undergone before the checkpoint, where the time be-
tween birth and first reproduction is coded as ’0’, that between first and second
reproduction ’1’, etc. (default 0). Only use in spp. where there is likely to be a
reasonable equivalence between breeding stages across a lifespan.

bcycle breeding cycle number of kin dispersal vector bvect. Must be a nonnegative
integer. (0, 1, 2, ...). Represents the number of complete breeding cycles the
sampled individual has undergone before the checkpoint, where the time be-
tween birth and first reproduction is coded as ’0’, that between first and second
reproduction ’1’, etc. (default 0). Only use in spp. where there is likely to be a
reasonable equivalence between breeding stages across a lifespan.

16 axpermute_standard

amixcycle breeding cycle number of kin dispersal vector amixvect. Must be a nonnega-
tive integer. (0, 1, 2, ...). Represents the number of complete breeding cycles
the sampled individual has undergone before the checkpoint, where the time be-
tween birth and first reproduction is coded as ’0’, that between first and second
reproduction ’1’, etc. (default 0). Only use in spp. where there is likely to be a
reasonable equivalence between breeding stages across a lifespan.

bmixcycle breeding cycle number of kin dispersal vector bmixvect. Must be a nonnega-
tive integer. (0, 1, 2, ...). Represents the number of complete breeding cycles
the sampled individual has undergone before the checkpoint, where the time be-
tween birth and first reproduction is coded as ’0’, that between first and second
reproduction ’1’, etc. (default 0). Only use in spp. where there is likely to be a
reasonable equivalence between breeding stages across a lifespan.

acompcycle breeding cycle number of kin dispersal vector acompvect. Must be a nonnega-
tive integer. (0, 1, 2, ...). Represents the number of complete breeding cycles
the sampled individual has undergone before the checkpoint, where the time be-
tween birth and first reproduction is coded as ’0’, that between first and second
reproduction ’1’, etc. (default 0). Only use in spp. where there is likely to be a
reasonable equivalence between breeding stages across a lifespan.

bcompcycle breeding cycle number of kin dispersal vector bcompvect. Must be a nonneg-
ative integer. (0, 1, 2, ...). Represents the number of complete breeding cycles
the sampled individual has undergone before the checkpoint, where the time be-
tween birth and first reproduction is coded as ’0’, that between first and second
reproduction ’1’, etc. (default 0). Only use in spp. where there is likely to be a
reasonable equivalence between breeding stages across a lifespan.

output string denoting what kind of output to return. If ’confs’, a vector of 95% confi-
dence intervals. if ’vect’, a vector of all permutated axial value results

override whether or not to override the default -1 cycle compatibility check (default
FALSE) override in situations where you are confident e.g. a c(-1, -1) cycle FS
or HS category is truly zeroed (& thus separated from later stages by a complete
lifespan)

Details

This (with its paired function axials_standard) are the core functions implemented in the kindisperse
package. They enable the decomposition of the pedigree & dispersal information contained in the
sampled distributions of close kin dyads (full siblings, first cousins, etc.) & its leveraging within
an additive dispersal framework to estimate the key intergenerational (parent-offspring) dispersal
parameter of a population. Four key ideas underpin the approach in this function: (a) tracing dis-
persal pedigrees to determine the number of complete intergenerational (breeding-cycle-spanning)
dispersal events separating the sampled close-kin dyads; (b) using kin categories that share the same
overarching kinship ’phase’ to control for residual ’phased’ (non-intergenerational) disperal events
that occur at the pedigree branch point (e.g. ovipositional dispersal for full sibling mosquitoes), and
(c) using synced or equivalent sampling points to eliminate non-intergenerational dispersal at the
branch-tips of the pedigrees, then finally (d) decomposing the ’pure’ pedigree-associated (intergen-
erational) dispersal into an estimae of the single-generation intergenerational dispersal parameter.

At its most basic, this function requires information about two dispersal vectors, a & b - both of a
phased kinship category, & vector a having a more dispersed pedigree than vector b. In addition

axpermute_standard 17

to this initial pair of dispersed kin categories, either one or another matched pair of kin categories
can be added:

1. A mixture category. This redefines the vector it is paired with (either a or b) so that rather
than being considered as a ’pure’ pedigree variant, it is considered as mixed with a different
kin category, often of a differing pedigree phase. If used, the other initial vector must also be
paired with a related mixture category or composite vector.

2. A composite dispersal vector. This is defined exactly as the initial dispersal vectors. After
calculation, the axial value found is composited with that of the matched initial vector, and
its kinship category redefined as a mixture category as above. If used, the other initial vector
must also be paired with a related mixture category or composite vector. These can be paired
so that a mixture category (e.g. first & half-first cousins where these could not be separated
with available genetic data) can be counterbalanced with the composition of full sibling &
half-sibling dyads, which (assuming equal mixture) approximately controls for the phasing
of the mixed kin categories, enabling an estimate of intergenerational dispersal without exact
knowledge of the composition of the cousins distribution.

Each vector or KinPairData / KinPairSimulation object is paired with several other parameters:
(1) a logical (e.g. amix delineating whether the category is being used in the calculation, (2) a
category parameter (.e.g acat) defining what kin relationship is being measured, (3) an optional
breeding cycle number (e.g. acycle) showing the number of breeding cycles each member of the
kin pair has passed through before being sampled (the cycle vector c(1, 0) corresponds to an adult
& a juvenile being sampled at the same point in the breeding cycle; c(1, 1) represents two adults
(i.e. after their first breeding), etc.) . If a KinPairData or KinPairSimulation object is inputted,
all paired parameters that are not explicitly set will default to those contained in the objects (using
KinPair objects is the ideal way to deploy this function).

Confidence intervals are assigned via bootstrapping, or optionally the vector of all bootstrapped
results can be outputted by setting output to 'vect', enabling its passing to other functions or
external statistical analysis.

For further information on this function, package & the dispersal estimation method it represents,
see the paper by Jasper et al. - "A genomic approach to inferring kinship reveals limited intergener-
ational dispersal in the yellow fever mosquito", doi:10.1111/17550998.13043.

Value

If output = ’confs’ returns vector of 95% confidence intervals (with mean). If output = ’vect’ returns
vector of individual axial estimates from each permutation

See Also

Other axstandard: axials_standard()

Examples

cous <- rexp(100, 1 / 100)
fullsibs <- rexp(50, 1 / 50)
axpermute_standard(cous, fullsibs, acat = "1C", bcat = "FS")

https://doi.org/10.1111/1755-0998.13043

18 axpermute_subtract

axpermute_subtract Subtract axial distributions with confidence intervals

Description

Finds the difference between two different empirical axial distributions with confidence intervals.
This is most useful when one distribution subsumes another and includes a unique dispersal event
that needs to be extracted. For example, the FS category is subsumed by the 1C category, which
can be written ’FS + PO’. In this circumstance, subtracting FS from 1C will yield an estimate of
the PO kernel (the basic intergenerational dispersal kernel). Confidence intervals are assigned via
bootstrapping, or optionally the vector of all bootstrapped results can be outputted by setting output
to 'vect', enabling its passing to other functions or external statistical analysis.

Usage

axpermute_subtract(
bigvals,
smallvals,
nreps = 1000,
nsamp = "std",
composite = 2,
output = "confs"

)

Arguments

bigvals numeric. Vector of distance distributions of the larger (subsuming) distribution
(e.g. 1C) OR object of class KinPairData.

smallvals numeric. Vector of distance distributions of the smaller (subsumed) distribution
(e.g. FS) OR object of class KinPairData.

nreps numeric. Number of permutations to perform when generating confidence inter-
vals.

nsamp numeric. number of kin pairs to subsample for each permutation. Either "std" or
an integer. If "std" will be computed as equal to the sample size. (default "std")

composite numeric. The number of separate ’draws’ (dispersal events) from the kernel re-
quired to produce the final positions of the measured individuals. For example,
the displacement of a child from parent at the same lifestage would involve 1
draw and thus be composite = 1. Two full siblings would be two draws (com-
posite = 2) from the FS kernel. Non-symmetric relationships (e.g. AV, 1C)
should not be decomposed using this method, nor should any assumptions be
made about different kernels (e.g. the 1C relationship would appropriately be
given the value 2, but not 4)

output character. What kind of output to return. Either ’confs’ (default -> confidence
intervals) or ’vect -> vector of axial distances

breeding_cycle 19

Value

If output = ’confs’ returns numeric vector of 95% confidence intervals and mean axial value. If
output = ’vect’ returns numeric vector of individual axial estimates from each permutation

See Also

Other axial_helpers: axials(), axials_add(), axials_decompose(), axials_subtract(), axpermute()

Examples

firstcous <- rexp(100, 1 / 80)
fullsibs <- rexp(100, 1 / 50)
axpermute_subtract(firstcous, fullsibs)

breeding_cycle Access breeding cycle at sampling of DispersalModel object.

Description

Access breeding cycle at sampling of DispersalModel object.

Usage

breeding_cycle(x)

S4 method for signature 'DispersalModel'
breeding_cycle(x)

S4 method for signature 'KinPairData'
breeding_cycle(x)

Arguments

x object of class DispersalModel

DispersalModel object of class DispersalModel

KinPairData object of class KinPairData

Value

integer(s) >= -1 Breeding cycle numbers of modeled dispersed kin. Represents the number of
complete breeding cycles each indivdiual has undergone before the sampling point, where the time
between birth and first reproduction is coded as 0, that between first and second reproduction 1, etc.

Methods (by class)

• breeding_cycle(DispersalModel):

• breeding_cycle(KinPairData):

20 check_valid_kinship

breeding_stage Access life stage at which breeding occurs of DispersalModel object

Description

Access life stage at which breeding occurs of DispersalModel object

Usage

breeding_stage(x)

S4 method for signature 'DispersalModel'
breeding_stage(x)

Arguments

x object of class DispersalModel

DispersalModel object of class DispersalModel

Value

character life stage at which breeding occurs for modeled dispersed kin.

Methods (by class)

• breeding_stage(DispersalModel):

check_valid_kinship Check valid kinship

Description

Checks if vector of kinship categories contains all valid entries

Usage

check_valid_kinship(vect)

Arguments

vect vector of kinship categories

Value

TRUE if valid. Error otherwise.

check_valid_lifestage 21

check_valid_lifestage Check valid lifestage

Description

Checks if vector of lifestages contains all valid entries

Usage

check_valid_lifestage(vect)

Arguments

vect vector of lifestages

Value

TRUE if valid. Error otherwise

csv_to_kinpair Reads .csv and converts to KinPairData object

Description

This function is part of suite of functions handling file import/export for kinship dispersal objects.

.csv & .tsv reading functions at minimum require the .delim file to contain a column titled ’dis-
tance’ containing distances between kin pairs. It can optionally contain a column of kinship values
’kinship’ as well as a column of lifestage values ’lifestage’. If the file contains more than one value
in the kinship or lifestage columns (e.g. bot ’FS’ and ’HS’) - the corresponding function parame-
ter must be set to pick a corresponding subset of dispersed pairs. where parameters are set in the
absence of file columns, these values are assigned to the returned KinPairData object.

Usage

csv_to_kinpair(file, kinship = NULL, lifestage = NULL, ...)

Arguments

file The file path to read from

kinship character. kin category to assign or extract from data. one of PO, FS, HS, AV,
GG, HAV, GGG, 1C, 1C1, 2C, GAV, HGAV, H1C , H1C1 or H2C

lifestage character. lifestage to assign or extract from data. one of ’unknown’, ’immature’
or ’ovipositional’.

... additional arguments to pass to read_csv

22 df_to_kinpair

Value

returns an object of class KinPairData

See Also

Other import_functions: df_to_kinpair(), read_kindata(), tsv_to_kinpair(), vector_to_kinpair()

df_to_kinpair Convert dataframe or tibble to KinPairData class

Description

This function at minimum requires the dataframe to contain a column titled ’distance’ containing
distances between kin pairs. It can optionally contain a column of kinship values ’kinship’ as well
as a column of lifestage values ’lifestage’. If the file contains more than one value in the kinship
or lifestage columns (e.g. bot ’FS’ and ’HS’) - the corresponding function parameter must be set
to pick a corresponding subset of dispersed pairs. where parameters are set in the absence of file
columns, these values are assigned to the returned KinPairData object.

Usage

df_to_kinpair(data, kinship = NULL, lifestage = NULL, lifecheck = TRUE)

Arguments

data data.frame or tibble of kin distances - can contain $distance (kin distances),
$kinship (kin cats) & $lifestage columns

kinship character. kin category to assign or extract from data. one of PO, FS, HS, AV,
GG, HAV, GGG, 1C, 1C1, 2C, GAV, HGAV, H1C , H1C1 or H2C

lifestage character. lifestage to assign or extract from data. one of ’unknown’, ’immature’
or ’ovipositional’.

lifecheck logical. If TRUE (default) tests if lifestage is valid, if FALSE, ignores this test.
Set to FALSE when using custom lifestages.

Value

returns valid KinPairData object

See Also

Other import_functions: csv_to_kinpair(), read_kindata(), tsv_to_kinpair(), vector_to_kinpair()

DispersalModel-class 23

Examples

mydata <- tibble::tibble(
distance = 1:10, lifestage = "immature",
kinship = c("FS", "FS", "FS", "FS", "FS", "FS", "HS", "HS", "HS", "HS")

)
df_to_kinpair(mydata, kinship = "FS")

DispersalModel-class DispersalModel Class

Description

The class DispersalModel is an S4 Class supplying organism-specific information about dispersal
stages (with axial sigmas), FS & HS branch points, and the dispersal stage at which sampling
occurs.It is used with the simulate_kindist_custom function to enable the simulation of uniquely
defined breeding & dispersal cycles.

Usage

S4 method for signature 'DispersalModel'
show(object)

S4 method for signature 'DispersalModel'
initialize(
.Object,
stages = NULL,
dispersal_vector = NULL,
fs = NULL,
hs = NULL,
sampling_stage = NULL,
cycle = NULL,
breeding_stage = NULL,
visible_stage = NULL

)

Arguments

object an object of class DispersalModel

.Object object to be constructed into DispersalModel class

stages character. Ordered vector of all dispersal stages across the breeding cycle of the
modeled species

dispersal_vector

numeric. Named vector of custom breeding cycle stages and their corresponding
axial dispersal values

fs character. breeding cycle stage at which first substantial FS-phased dispersal
occurs

24 DispersalModel-class

hs character. breeding cycle stage at which first substantial HS-phased dispersal
occurs

sampling_stage character. stage in the breeding cycle at which samples are to be collected for
kin identification.

cycle non-negative integer. Breeding cycle numbers of dispersed kin to be modeled.
Represents the number of complete breeding cycles each simulated individual
has undergone before the sampling point, where the time between birth and first
reproduction is coded as ’0’, that between first and second reproduction ’1’, etc.
(default 0)

breeding_stage (character) - stage in the cycle at which breeding occurs. Must correspond to a
previously described cycle stage name. By default, equated with the .HS stage.
This stage corresponds to the generation of next-generation individuals; the
.FS & .HS stages correspond to their separation. Needed for situations where
individuals are sampled before they separate from the parent. Modify if the
modeled .HS gamete dispersal event does not correspond to the initial breeding
event.

visible_stage (character) - stage in the cycle at the beginning of which individuals are visible
to the study for sampling rather than their parents (i.e. the beginning point of
cycle 0). By default, equated with the fs stage. This parameter determines how
many dispersal stages individuals have gone through before they are sampled -
if .sampling_stage occurs just after .visible_stage, the sampled individu-
als will have dispersed through only a small amount of the breeding cycle. if
.sampling_stage occurs just before .visible_stage, the sampled individ-
uals will have dispersed throughout most of the breeding cycle before being
sampled. If .cycle is set to -1, dispersal stages between breeding & visibility
can be accessed.

DispersalModel an object of class DispersalModel

Details

The original simulation functions in this package (simulate_kindist_simple() & simulate_kindist_composite)
were designed for an organism with a specific (& relatively simple) breeding & dispersal cycle.
’simple’ corresponded to a single dispersal event across a lifespan, equivalency of all dispersal
phases (FS, HS, PO) and no lifetime overlaps. ’composite’ corresponded to many insect disper-
sal situations, where breeding & oviposition are the key ’phase-defining’ events (i.e., they lead to
the initial gamete dispersal of half siblings & full siblings from each other), where field sampling
typically occurs via ovitraps

More general dispersal scenarios (e.g in mammals) require the ability to uniquely specify a va-
riety of distinct breeding ecologies & sampling schemes: the DispersalModel class paired with
the simulate_kindist_custom function achieves this by defining a breeding cycle with an arbi-
trary number of dispersal phases (the dispersal_vector slot, accessed by the dispersal_vector
method).

The breeding structure of a species may also impact at which stage FS and HS phase branches
occur. In Ae. aegypti, males mate with multiple females in a (single) breeding season, and a female
typically carried the egg of only one male. In this context the FS (full-sibling) phase would be set
to correspond to the female’s oviposition dispersal, while the HS (half-sibling) phase would be set
to correspond to the male’s breeding dispersal (as its gametes will then be dispersed by multiple

DispersalModel-class 25

females across their gravid & ovipositional phases). However, in e.g. some species of the marsupial
Antechinus, the FS branch point would be more appropriately associated with juveniles at the time
that they leave the mother’s pouch. The fs and hs slots & accessor functions enable the assignment
of these phase branches to any defined life phase. Similarly, the sampling_stage slot & method
allow the sampling point to be set to correspond to any phase of the defined breeding cycle.

The next parameter stored in this object is the breeding cycle number cycle, accessed by the
breeding_cycle method. This parameter enables the treatment of species that undergo multi-
ple breeding cycles in one lifetime. This is defined as a length two vector describing the number of
breeding cycles undergone by the final descendant of branch 1 and branch 2 of the dispersal pedi-
gree before their sampling (or after branching in the case of PO). (where branch one is the ’senior’
and branch two the ’junior’ member of the pedigree) (so uncle is branch one, nephew branch two,
grandmother branch one, granddaughter branch two, etc.). For each member of the resulting kin
pair, the cycle number represents the number of complete breeding cycles each individual has un-
dergone before the sampling point, where the time between birth and first reproduction is coded as
’0’, that between first and second reproduction ’1’, etc. This enables an application of the simulation
functions defined here to deal with populations with some amount of overlap between generations.

Note that this ’breeding cycle’ approach is only applicable in situations where there is an approxi-
mate equivalence between the dispersal which occurs in the first ’juvenile’ breeding cycle and that
which occurs between later breeding cycles. This parameter is implemented here, but it will of-
ten be more productive to implement it instead as a parameter of the simulate_kindist_custom
function (the cycle parameter there if set overrides whatever was defined within this object)

The final parameter stored in this object is the breeding stage, breeding_stage. This describes the
stage at which the descendant individuals are generated (as opposed to fs & hs, which describe the
point at which they are dispersed from the parent)

Value

returns object of class DispersalModel

No return value. Called for side effects

returns an object of class DispersalModel

Methods (by generic)

• show(DispersalModel): print method

• initialize(DispersalModel): initialization method

Slots

dispersal_vector numeric. Named vector of custom breeding cycle stages and their correspond-
ing axial dispersal values

stages character. Ordered vector of all dispersal stages across the breeding cycle of the modeled
species

fs character. breeding cycle stage at which first substantial FS-phased dispersal occurs

hs character. breeding cycle stage at which first substantial HS-phased dispersal occurs

sampling_stage character. stage in the breeding cycle at which samples are to be collected for
kin identification.

26 dispersal_model

cycle non-negative integer. Breeding cycle numbers of dispersed kin to be modeled. Represents
the number of complete breeding cycles each individual has undergone before the sampling
point, where the time between birth and first reproduction is coded as ’0’, that between first
and second reproduction ’1’, etc. (default 0)

breeding_stage (character) - stage in the cycle at which breeding occurs. Must correspond to
a previously described cycle stage name. By default, equated with the .HS stage. This stage
corresponds to the generation of next-generation individuals; the .FS & .HS stages correspond
to their separation. Needed for situations where individuals are sampled before they separate
from the parent. Modify if the modeled .HS gamete dispersal event does not correspond to the
initial breeding event.

visible_stage (character) - stage in the cycle at the beginning of which individuals are visible
to the study for sampling rather than their parents (i.e. the beginning point of cycle 0). By
default, equated with the fs stage. This parameter determines how many dispersal stages
individuals have gone through before they are sampled - if .sampling_stage occurs just after
.visible_stage, the sampled individuals will have dispersed through only a small amount
of the breeding cycle. if .sampling_stage occurs just before .visible_stage, the sampled
individuals will have dispersed throughout most of the breeding cycle before being sampled.
If .cycle is set to -1, dispersal stages between breeding & visibility can be accessed.

See Also

Other kdclasses: KinPairData-class, KinPairSimulation-class

dispersal_model Create Dispersal Model of an Organism

Description

The function creates an object of class DispersalModel carrying organism-specific information
about dispersal stages (with axial sigmas), FS & HS branch points, and the dispersal stage at which
sampling occurs.It is used with the simulate_kindist_custom function to enable the simulation
of uniquely defined breeding & dispersal cycles.

Usage

dispersal_model(
...,
.FS = 0,
.HS = .FS,
.sampling_stage = 0,
.cycle = 0,
.breeding_stage = .HS,
.visible_stage = .FS

)

dispersal_model 27

Arguments

... name, value (numeric) pairs pairing custom lifestages with their corresponding
axial dispersal values. MUST be in chronological order across the entire breed-
ing cycle.

.FS (character) - breeding cycle stage at which first substantial FS-phased dispersal
occurs. Must correspond to a previously described cycle stage name. Typi-
cally reflects the first dispersal of female gametes from the mother at (variously)
egg-laying, birth, weaning stages (species-dependent). Use care in adapting to
situations where multiple breeding and/or dispersal routes commonly lead to the
FS phase

.HS (character) - breeding cycle stage at which first substantial HS-phased dispersal
occurs. Must correspond to a previously described cycle stage name. Typically
reflects the movement of male gametes at e.g. the breeding stage (use care in
adapting to situations where multiple dispersal routes commonly lead to the HS
phase)

.sampling_stage

(character) - stage in the breeding cycle at which samples are to be collected
for kin identification. Must correspond to a previously described cycle stage
name. (so collection of eggs corresponds to an egg-laying stage, as juveniles to
a juvenile stage, etc.)

.cycle (integer >= -1 or vector of two such integers) breeding cycle numbers of dis-
persed kin to be modeled. Represents the number of complete breeding cycles
each simulated individual has undergone before the sampling point, where the
time between first dispersal and first reproduction is coded as ’0’, that between
first and second reproduction ’1’, etc. (default 0). If .cycle is specially set to
’-1’ this constitutes the sampling of an individual before it has differentiated
(via dispersal) from the parent. Only use in spp. where there is likely to be a
reasonable equivalence between breeding stages across a lifespan. As the rest
of the model is compatible with a variety of cycle points, this parameter will
often be overridden by the ’cycle’ parameter in the simulate_kindist_custom
function.

.breeding_stage

(character) - stage in the cycle at which breeding occurs. Must correspond to a
previously described cycle stage name. By default, equated with the .HS stage.
This stage corresponds to the generation of next-generation individuals; the
.FS & .HS stages correspond to their separation. Needed for situations where
individuals are sampled before they separate from the parent. Modify if the
modeled .HS gamete dispersal event does not correspond to the initial breeding
event.

.visible_stage (character) - stage in the cycle at the beginning of which individuals are visible
to the study for sampling rather than their parents (i.e. the beginning point of
cycle 0). By default, equated with the .FS stage. This parameter determines
how many dispersal stages individuals have gone through before they are sam-
pled - if .sampling_stage occurs just after .visible_stage, the sampled in-
dividuals will have dispersed through only a small amount of the breeding cycle.
if .sampling_stage occurs just before .visible_stage, the sampled individ-
uals will have dispersed throughout most of the breeding cycle before being

28 dispersal_model

sampled. If .cycle is set to -1, dispersal stages between breeding & visibility
can be accessed.

Details

The original simulation functions in this package (simulate_kindist_simple() & simulate_kindist_composite)
were designed for an organism with a specific (& relatively simple) breeding & dispersal cycle.
’simple’ corresponded to a single dispersal event across a lifespan, equivalency of all dispersal
phases (FS, HS, PO) and no lifetime overlaps. ’composite’ corresponded to many insect disper-
sal situations, where breeding & oviposition are the key ’phase-defining’ events (i.e., they lead to
the initial gamete dispersal of half siblings & full siblings from each other), where field sampling
typically occurs via ovitraps

More general dispersal scenarios (e.g in mammals) require the ability to uniquely specify a va-
riety of distinct breeding ecologies & sampling schemes: the DispersalModel class paired with
the simulate_kindist_custom function achieves this by defining a breeding cycle with an arbi-
trary number of dispersal phases (the dispersal_vector slot, accessed by the dispersal_vector
method).

The breeding structure of a species may also impact at which stage FS and HS phase branches
occur. In Ae. aegypti, males mate with multiple females in a (single) breeding season, and a female
typically carried the egg of only one male. In this context the FS (full-sibling) phase would be set
to correspond to the female’s oviposition dispersal, while the HS (half-sibling) phase would be set
to correspond to the male’s breeding dispersal (as its gametes will then be dispersed by multiple
females across their gravid & ovipositional phases). However, in e.g. some species of the marsupial
Antechinus, the FS branch point would be more appropriately associated with juveniles at the time
that they leave the mother’s pouch. The .FS and .HS parameters enable the assignment of these
phase branches to any defined life phase. Similarly, the .sampling_stage parameter allow the
sampling point to be set to correspond to any phase of the defined breeding cycle (this is later
accessed with the sampling_stage method).

The final parameter stored in this object is the breeding cycle number .cycle, accessed later by the
breeding_cycle method. This parameter enables the treatment of species that undergo multiple
breeding cycles in one lifetime. This is defined as a length two vector describing the number of
breeding cycles undergone by the final descendant of branch 1 and branch 2 of the dispersal pedigree
before their sampling. (where branch one is the ’senior’ and branch two the ’junior’ member of
the pedigree) (so uncle is branch one, nephew branch two, grandmother branch one, granddaughter
branch two, etc.). For each member of the resulting kin pair, the cycle number represents the number
of complete breeding cycles each individual has undergone before the sampling point, where the
time between birth and first reproduction is coded as ’0’, that between first and second reproduction
’1’, etc. This enables an application of the simulation functions defined here to deal with populations
with some amount of overlap between generations.

Note that this ’breeding cycle’ approach is only applicable in situations where there is an approxi-
mate equivalence between the dispersal which occurs in the first ’juvenile’ breeding cycle and that
which occurs between later breeding cycles. This parameter is implemented here, but it will of-
ten be more productive to implement it instead as a parameter of the simulate_kindist_custom
function (the cycle parameter there if set overrides whatever was defined within this object)

dispersal_vector 29

Value

Returns an object of class DispersalModel containing custom lifestages and dispersal, phase &
sampling parameters that can be passed to simulation functions.

Examples

antechinus_model <- dispersal_model(pouch = 25, nest = 25, free_living = 250, breeding = 40,
gestation = 25, .FS = "nest", .HS = "breeding", .sampling_stage = "nest")
antechinus_model

dispersal_vector Access dispersal vector of DispersalModel object.

Description

Access dispersal vector of DispersalModel object.

Usage

dispersal_vector(x)

S4 method for signature 'DispersalModel'
dispersal_vector(x)

Arguments

x object of class DispersalModel

DispersalModel object of class DispersalModel

Value

numeric vector named vector of custom lifestages & associated dispersal sigmas.

Methods (by class)

• dispersal_vector(DispersalModel):

30 distances

display_appdata Show printout of named items stored in appdata.

Description

This function is part of a suite of functions handling the interface between the kindisperse app &
R package. Due to how shiny’s interactive programming works, ordinary objects are not visible to
the reactive functions embedded in the app. The solution implemented here is to construct a custom
environment, env_appdata, that is accessible within the app and outside of it.

This function prints a summary of all objects currently stored within the app interface environment,
by name and class

Usage

display_appdata()

Value

No return value, called for side effects

See Also

Other app_ports: mount_appdata(), reset_appdata(), reset_tempdata(), retrieve_appdata(),
retrieve_tempdata(), retrieveall_appdata(), unmount_appdata()

Examples

mount_appdata(kin_pair_data(), "my_kindata")
mount_appdata(simulate_kindist_simple(nsims = 10), "my_simdata")

display_appdata()

distances Access or assign distances category of KinPairData class objects

Description

Access or assign distances category of KinPairData class objects

Usage

distances(x)

S4 method for signature 'KinPairData'
distances(x)

elongate 31

Arguments

x object of class KinPairData

KinPairData object of class KinPairData

Value

Returns a numeric vector of kin separation distances

Methods (by class)

• distances(KinPairData):

See Also

Other kpdmethods: kinship(), lifestage()

elongate Change the shape (aspect ratio) of a rectangle while preserving area

Description

This function is used to manipulate the dimensions parameter in other package functions, which
control site dimentions. These geometries can be entered innto functions in a few ways: (a) a single
numeric value, which will be interpreted as the length of the side of a square; (b) a numeric vector
of length two, which will be interpreted as the length & width of the sample site; (c) either of the
above passed to this function, which takes the rectangular site dimensions and alters their aspect
ratio (ratio of length to width) while preserving the underlying area the study site covers.

Usage

elongate(dims, aspect = 1)

Arguments

dims Original rectangle dimensions - either single number (length of side of square)
or length 2 numeric vector (lengths of sides x and y of rectangle)

aspect Aspect ratio of side lengths x & y (i.e. x/y) in the new rectangle

Value

Returns a numeric vector containing the side lengths c(x, y) of a transformed rectangle with pre-
served area

Examples

elongate(10, 100)
elongate(c(5, 125), 4)

32 filter_methods

filtertype Access filtertype of KinPairSimulation object

Description

Access filtertype of KinPairSimulation object

Usage

filtertype(x)

filtertype(x) <- value

S4 method for signature 'KinPairSimulation'
filtertype(x)

Arguments

x object of class KinPairSimulation
value new value to assign
KinPairSimulation

object of class KinPairSimulation

Value

character filter status of simulation

returns a modified object of the relevant class

character filter status of KinPairSimulation object

Methods (by class)

• filtertype(KinPairSimulation):

filter_methods Access or modify the filter parameters of KinPairSimulation ob-
jects

Description

These generics & methods work as an interface between KinPairSimulation objects and the
sample_kindist function. They either retrieve the value of pre-existing filter steps that have been
applied to the object (e.g. upper(x)) or assign such a filtering parameter to the KinPairSimulation
object (e.g. sampledims(x) <- value). In this case, the method passes the KinPairSimulation
object to the sample_kindist() function for subsampling or filtering, then updates the sampling
parameter before returning the modified object. Note that while the sample_kindist function
can take KinPairData objects, the methods described here are only applicable to objects of class
KinPairSimulation.

filter_methods 33

Usage

upper(x)

upper(x) <- value

lower(x)

lower(x) <- value

spacing(x)

spacing(x) <- value

samplenum(x)

samplenum(x) <- value

sampledims(x)

sampledims(x) <- value

S4 method for signature 'KinPairSimulation'
upper(x)

S4 method for signature 'KinPairSimulation'
lower(x)

S4 method for signature 'KinPairSimulation'
spacing(x)

S4 method for signature 'KinPairSimulation'
samplenum(x)

S4 method for signature 'KinPairSimulation'
sampledims(x)

S4 replacement method for signature 'KinPairSimulation'
upper(x) <- value

S4 replacement method for signature 'KinPairSimulation'
lower(x) <- value

S4 replacement method for signature 'KinPairSimulation'
spacing(x) <- value

S4 replacement method for signature 'KinPairSimulation'
samplenum(x) <- value

34 fs

S4 replacement method for signature 'KinPairSimulation'
sampledims(x) <- value

Arguments

x object of class KinPairSimulation

value value for parameter to be adjusted to
KinPairSimulation

object of class KinPairSimulation

Value

either the accessed numeric filter parameter or a filtered KinPairSimulation object

Functions

• upper(KinPairSimulation):

• lower(KinPairSimulation):

• spacing(KinPairSimulation):

• samplenum(KinPairSimulation):

• sampledims(KinPairSimulation):

• upper(KinPairSimulation) <- value:

• lower(KinPairSimulation) <- value:

• spacing(KinPairSimulation) <- value:

• samplenum(KinPairSimulation) <- value:

• sampledims(KinPairSimulation) <- value:

See Also

Other kpsmethods: access_sigmas, kernelshape(), kerneltype(), simtype()

fs Access FS phase split point of DispersalModel object.

Description

Access FS phase split point of DispersalModel object.

Usage

fs(x)

S4 method for signature 'DispersalModel'
fs(x)

get_dispersal_model 35

Arguments

x object of class DispersalModel

DispersalModel object of class DispersalModel

Value

character FS phase split

Methods (by class)

• fs(DispersalModel):

get_dispersal_model Access dispersal model of KinPairSimulation object

Description

Access dispersal model of KinPairSimulation object

Usage

get_dispersal_model(x)

S4 method for signature 'KinPairSimulation'
get_dispersal_model(x)

Arguments

x object of class KinPairSimulation

KinPairSimulation

object of class KinPairSimulation

Value

returns an object of class DispersalModel

Methods (by class)

• get_dispersal_model(KinPairSimulation):

36 is.DispersalModel

hs Access HS phase split point of DispersalModel object.

Description

Access HS phase split point of DispersalModel object.

Usage

hs(x)

S4 method for signature 'DispersalModel'
hs(x)

Arguments

x object of class DispersalModel

DispersalModel object of class DispersalModel

Value

character HS phase split

Methods (by class)

• hs(DispersalModel):

is.DispersalModel Check if object is of class DispersalModel

Description

Check if object is of class DispersalModel

Usage

is.DispersalModel(x)

Arguments

x object to be checked

Value

returns TRUE if of class DispersalModel, FALSE if not

is.KinPairData 37

is.KinPairData Check if object is of class KinPairData

Description

Check if object is of class KinPairData

Usage

is.KinPairData(x)

Arguments

x object to be checked

Value

Returns TRUE if of class KinPairData, FALSE if not.

is.KinPairSimulation Check if object is of class KinPairSimulation

Description

Check if object is of class KinPairSimulation

Usage

is.KinPairSimulation(x)

Arguments

x object to be checked

Value

Returns TRUE if of class KinPairSimulation, FALSE if not

38 kerneltype

kernelshape Access kernel type of KinPairSimulation object

Description

Access kernel type of KinPairSimulation object

Usage

kernelshape(x)

S4 method for signature 'KinPairSimulation'
kernelshape(x)

Arguments

x object of class KinPairSimulation
KinPairSimulation

object of class KinPairSimulation

Value

character the shape parameter used in kernel simulation (if kerneltype is vgamma)

character the shape parameter used in kernel simulation (if kerneltype is vgamma)

Methods (by class)

• kernelshape(KinPairSimulation):

See Also

Other kpsmethods: access_sigmas, filter_methods, kerneltype(), simtype()

kerneltype Access or assign kerneltype of KinPairSimulation object

Description

Access or assign kerneltype of KinPairSimulation object

Usage

kerneltype(x)

kerneltype(x) <- value

S4 method for signature 'KinPairSimulation'
kerneltype(x)

KinPairData-class 39

Arguments

x object of class KinPairSimulation

value new value to assign
KinPairSimulation

object of class KinPairSimulation

Value

character the type of statistical kernel used to run the simulation (Gaussian, Laplace, vgamma)

returns a modified object of the relevant class with altered kerneltype parameter

character the type of statistical kernel used to run the simulation (Gaussian, Laplace, vgamma)

Methods (by class)

• kerneltype(KinPairSimulation):

See Also

Other kpsmethods: access_sigmas, filter_methods, kernelshape(), simtype()

KinPairData-class Formal class KinPairData

Description

The class KinPairData is a formal (S4) class for storing kinship and lifespan dispersal information
concerning kin pairs. It is the base class on which the KinPairSimulation class is built. The
KinPairData class is used to store information about the spatial distribution of kin dyads for use in
calculating axial sigmas of intergenerational dispersal as initially implemented in Jasper et al. 2019
(doi:10.1111/17550998.13043).

Usage

S4 method for signature 'KinPairData'
show(object)

S4 method for signature 'KinPairData'
initialize(
.Object,
data = NULL,
kinship = NULL,
lifestage = NULL,
cycle = NULL,
...

)

https://doi.org/10.1111/1755-0998.13043

40 KinPairData-class

Arguments

object an object of class KinpairData

.Object the KinPairData object to be constructed

data data about kinship to be used to construct object (tibble, data.frame, or numeric
vector of distances)

kinship character. Kinship category value for object. - one of PO, FS, HS, AV, HAV,
GG, 1C, H1C, GAV, HGAV, 1C1, H1C1, GGG, 2C, and H2C.

lifestage character. Lifestage value for object. - one of ’immature’, ’ovipositional’ or
’unknown’

cycle non-negative integer or vector of two such integers - Represents the number of
complete breeding cycles each simulated individual has undergone before the
sampling point, where the time between birth and first reproduction is coded as
’0’, that between first and second reproduction ’1’, etc. (default 0). If the first in-
dividual was sampled as a juvenile & the second as an adult of equivalent stage,
the vector c(0, 1) would be used. In most situations, defualt will be appropriate

... additional argument to pass to downstream functions in future

KinPairData object of class KinPairData

Details

This class is essentially wrapped around the tbl_df class but with (a) expectations around certain
columns that must be present (id1, id2, kinship, & distance - three ’character’ & one ’numeric’
column), as well as (b) additional attributes (kinship, lifestage, & cycle) characterizing the
close-kin dyads being stored.These attributes, as well as the embedded vector of distances, can be
accessed with the methods kinship, lifestage, breeding_cycle and distances.

Objects from this class are returned from the df_to_kinpair and csv_to_kinpair functions (&
related), and are directly constructed with the namesake KinPairData() function. They can be
passed to the sample_kindist function for filtering and subsampling, and to axial functions (in-
cluding axials_standard and axpermute_standard) for estimation of axial dispersal.

Value

returns object of class KinPairData

No return value, called for side effects

Returns an object of class KinPairData

Methods (by generic)

• show(KinPairData): standard print method

• initialize(KinPairData): initialize method

Slots

kinship character - one of PO, FS, HS, AV, HAV, GG, 1C, H1C, GAV, HGAV, 1C1, H1C1, GGG,
2C, and H2C.

KinPairSimulation-class 41

lifestage character - lifestage at sampling - either ’immature’, ’ovipositional’ or a stage corre-
sponding to a DispersalModel custom stage

cycle non-negative integer or vector of two such integers - Represents the number of complete
breeding cycles each individual has undergone before the sampling point, where the time
between birth and first reproduction is coded as ’0’, that between first and second reproduction
’1’, etc. (default 0). If the first individual was sampled as a juvenile & the second as an adult
of equivalent stage, the vector c(0, 1) would be used. In most situations, the default will be
appropriate

tab tbl_df. - tibble of dispersal values

See Also

Other kdclasses: DispersalModel-class, KinPairSimulation-class

KinPairSimulation-class

KinPairSimulation Class

Description

The class KinPairSimulation is a formal (S4) class for storing kinship and dispersal distribu-
tion information derived from simulations in the kindisperse package. It is derived from the
KinPairData class. The KinPairSimulation class is used to store information about the spatial
distribution of kin dyads for use in calculating axial sigmas of intergenerational dispersal as initially
implemented in Jasper et al. 2019 (doi:10.1111/17550998.13043).

Usage

S4 method for signature 'KinPairSimulation'
show(object)

S4 method for signature 'KinPairSimulation'
initialize(
.Object,
data = NULL,
kinship = NULL,
lifestage = NULL,
simtype = NULL,
kerneltype = NULL,
kernelshape = NULL,
posigma = NULL,
initsigma = NULL,
breedsigma = NULL,
gravsigma = NULL,
ovisigma = NULL,
customsigma = NULL,
cycle = NULL,

https://doi.org/10.1111/1755-0998.13043

42 KinPairSimulation-class

simdims = NULL,
call = NULL,
filtertype = NULL,
upper = NULL,
lower = NULL,
spacing = NULL,
samplenum = NULL,
sampledims = NULL,
model = NULL

)

Arguments

object object of class KinPairSimulation

.Object object to be constructed into KinPairSimulation class

data tbl_df. tibble of simulation values

kinship character - one of PO, FS, HS, AV, HAV, GG, 1C, H1C, GAV, HGAV, 1C1,
H1C1, GGG, 2C, and H2C.

lifestage character - one of ’unknown’, ’immature’ or ’ovipositional’

simtype character - simulation type

kerneltype character. - ’Gaussian’, ’Laplace’ or ’vgamma’ (variance-gamma)

kernelshape numeric. - value of kernel shape of simulation (if using kernel with shape pa-
rameter e.g. vgamma)

posigma numeric - overall value of dispersal sigma (for simple kernel)

initsigma numeric. - value of pre-breeding dispersal sigma (for composite kernel)

breedsigma numeric. - value of breeding dispersal sigma (for composite kernel)

gravsigma numeric. - value of post-breeding dispersal sigma (for composite kernel)

ovisigma numeric. - value of oviposition dispersal sigma (for composite kernel)

customsigma numeric. - vector of named custom dispersal sigmas (for custom kernel)

cycle integer - number of breeding cycles sampled individual has survived (for custom
kernel)

simdims numeric. - dimensions of sampling area (assumes one side of square)

call call. Call to create object

filtertype character. whether the initial sim has been further filtered

upper numeric. - FILTER: upper threshold used

lower numeric. - FILTER: lower threshold used

spacing numeric. - FILTER: spacing used

samplenum numeric. - FILTER: sample number used

sampledims numeric. - FILTER: sample dimensions used

model list - model information if custom simulation used to generate object
KinPairSimulation

an object of class KinPairSimulation

KinPairSimulation-class 43

Details

This class is essentially wrapped around the tbl_df class but with (a) expectations around certain
columns that must be present (id1, id2, kinship, & distance - three ’character’ & one ’numeric’
column), as well as (b) additional attributes (kinship, lifestage, & cycle) characterizing the
close-kin dyads being stored.These attributes, as well as the embedded vector of distances, can be
accessed with the methods kinship, lifestage, breeding_cycle and distances. In addition to
the above attributes (derived from the KinPairData class), this class contains attributes capturing
the simulation type & parameters used to generate the final distribution of kin dyads.

Objects from this class are returned from the simulate_kindist_composite, simulate_kindist_simple
and simulate_kindist_custom functions (& related), and are directly constructed with the name-
sake KinPairSimulation() function. They can be passed to the sample_kindist function for fil-
tering and subsampling, and to axial functions (including axials_standard and axpermute_standard)
for estimation of axial dispersal.

Value

returns object of class KinPairSimulation

No return value, called for side effects

Returns an object of class KinPairSimulation

Methods (by generic)

• show(KinPairSimulation): print method

• initialize(KinPairSimulation): initialisation method

Slots

kinship character - one of PO, FS, HS, AV, HAV, GG, 1C, H1C, GAV, HGAV, 1C1, H1C1, GGG,
2C, and H2C.

simtype character. - one of ’simple’, ’composite’ or ’custom’

kerneltype character. - ’Gaussian’, ’Laplace’ or ’vgamma’ (variance-gamma)

posigma numeric. - overall value of dispersal sigma (for simple kernel)

initsigma numeric. - value of pre-breeding dispersal sigma (for composite kernel)

breedsigma numeric. - value of breeding dispersal sigma (for composite kernel)

gravsigma numeric. - value of post-breeding dispersal sigma (for composite kernel)

ovisigma numeric. - value of oviposition dispersal sigma (for composite kernel)

customsigma numeric - vector of named custom dispersal sigmas (for custom kernel)

simdims numeric. - dimensions of sampling area (assumes 1 side of square)

lifestage character. - lifestage at sampling - either ’immature’ or ’ovipositional’

cycle integer - number of breeding cycles sampled individuals have survived (for custom kernel)

kernelshape numeric. - shape parameter if vgamma kerneltype

call call. - call to create initial simulation

tab tbl_df. - tibble of simulation values

44 KinPairSimulation_composite

filtertype character. - whether the initial sim has been further filtered

upper numeric. - FILTER: upper threshold used

lower numeric. - FILTER: lower threshold used

spacing numeric. - FILTER: spacing used

samplenum numeric. - FILTER: sample number used

sampledims numeric. - FILTER: dimensions used

model DispersalModel - model of dispersal used to create object (with custom type)

See Also

Other kdclasses: DispersalModel-class, KinPairData-class

KinPairSimulation_composite

Constructor for KinPairSimulation Class (composite)

Description

Constructor for KinPairSimulation Class (composite)

Usage

KinPairSimulation_composite(
data = NULL,
kinship = NULL,
kerneltype = NULL,
initsigma = NULL,
breedsigma = NULL,
gravsigma = NULL,
ovisigma = NULL,
simdims = NULL,
lifestage = NULL,
kernelshape = NULL,
call = NULL,
model = NULL

)

Arguments

data tibble of pairwise kin classes & distances. Ideally contains fields id1 & id2 (chr)
an distance (dbl) optionally includes coords (x1, y1, x2, y2), lifestage (ls1 &
ls2), kinship (chr) and sims (dbl)

kinship character. Code for kinship category of simulation. one of PO, FS, HS, AV, GG,
HAV, GGG, 1C, 1C1, 2C, GAV, HGAV, H1C or H2C

KinPairSimulation_custom 45

kerneltype character. Statistical model for simulated dispersal kernel. Currently either
"Gaussian", "Laplace" or "vgamma" (variance-gamma).

initsigma numeric. Axial sigma of prebreeding (’juvenile’) dispersal kernel (axial stan-
dard deviation).

breedsigma numeric. Axial sigma of breeding dispersal kernel (axial standard deviation).

gravsigma numeric. Axial sigma of post-breeding (’gravid’) dispersal kernel (axial stan-
dard deviation).

ovisigma numeric. Axial sigma of oviposition dispersal kernel (axial standard deviation).

simdims numeric. Length of side of simulated area square.

lifestage character. Simulated lifestage of sampling. Either "immature" (sampled at
hatching) or "ovipositional" (sampled as an adult during oviposition - essentially
one lifespan later than ’immature’)

kernelshape numeric. Value of shape parameter for simulated kernel if kernel requires one
(e.g. vgamma kernel).

call call object. Use to pass the system call that led to the generation of this class.
(via sys.call)

model DispersalModel - model information passed from simulation function

Value

Returns a KinPairSimulation Class object with simtype set to ’composite’ and relevant fields
included.

Examples

kindata <- tibble::tibble(
id1 = c("a", "b", "c"), id2 = c("x", "y", "z"),
distance = c(50, 45, 65), kinship = c("1C", "1C", "1C")

)
KinPairSimulation_composite(kindata,

kinship = "1C", kerneltype = "Gaussian",
initsigma = 15, breedsigma = 25, gravsigma = 20, ovisigma = 10, lifestage = "immature"

)

KinPairSimulation_custom

Constructor for KinPairSimulation Class (custom)

Description

Constructor for KinPairSimulation Class (custom)

46 KinPairSimulation_custom

Usage

KinPairSimulation_custom(
data = NULL,
kinship = NULL,
kerneltype = NULL,
customsigma = NULL,
simdims = NULL,
lifestage = NULL,
kernelshape = NULL,
cycle = NULL,
call = NULL,
model = NULL

)

Arguments

data tibble of pairwise kin classes & distances. Ideally contains fields id1 & id2 (chr)
an distance (dbl) optionally includes coords (x1, y1, x2, y2), lifestage (ls1 &
ls2), kinship (chr) and sims (dbl)

kinship character. Code for kinship category of simulation. one of PO, FS, HS, AV, GG,
HAV, GGG, 1C, 1C1, 2C, GAV, HGAV, H1C or H2C

kerneltype character. Statistical model for simulated dispersal kernel. Currently either
"Gaussian", "Laplace" or "vgamma" (variance-gamma).

customsigma numeric. Named vector of custom breeding cycle stages and their corresponding
axial dispersal values

simdims numeric. Length of side of simulated area square.

lifestage character. Simulated lifestage of sampling. Here, must correspond to a custom
lifestage derived from ’customsigma’

kernelshape numeric. Value of shape parameter for simulated kernel if kernel requires one
(e.g. vgamma kernel).

cycle non-negative integer. Breeding cycle numbers of dispersed kin to be modeled.
Represents the number of complete breeding cycles each simulated individual
has undergone before the sampling point, where the time between birth and first
reproduction is coded as ’0’, that between first and second reproduction ’1’, etc.
(default 0)

call call object. Use to pass the system call that led to the generation of this class.
(via sys.call)

model DispersalModel - model information passed from simulation function

Value

Returns a KinPairSimulation Class object with simtype set to ’custom’ and relevant fields in-
cluded.

KinPairSimulation_simple 47

Examples

kindata <- tibble::tibble(
id1 = c("a", "b", "c"), id2 = c("x", "y", "z"),
distance = c(50, 45, 65), kinship = c("1C", "1C", "1C")

)
KinPairSimulation_custom(kindata,

kinship = "1C", kerneltype = "Gaussian",
customsigma = c(initsigma = 15, breedsigma = 25, gravsigma = 20, ovisigma = 10),
lifestage = "ovisigma", cycle = 0

)

KinPairSimulation_simple

Constructor for KinPairSimulation Class (simple)

Description

Constructor for KinPairSimulation Class (simple)

Usage

KinPairSimulation_simple(
data = NULL,
kinship = NULL,
kerneltype = NULL,
posigma = NULL,
simdims = NULL,
lifestage = NULL,
kernelshape = NULL,
call = NULL,
model = NULL

)

Arguments

data tibble of pairwise kin classes & distances. Ideally contains fields id1 & id2 (chr)
an distance (dbl) optionally includes coords (x1, y1, x2, y2), lifestage (ls1 &
ls2), kinship (chr) and sims (dbl)

kinship character. Code for kinship category of simulation. one of PO, FS, HS, AV, GG,
HAV, GGG, 1C, 1C1, 2C, GAV, HGAV, H1C or H2C

kerneltype character. Statistical model for simulated dispersal kernel. Currently either
"Gaussian", "Laplace" or "vgamma" (variance-gamma).

posigma numeric. Axial sigma of dispersal kernel (axial standard deviation).

simdims numeric. Length of side of simulated area square.

48 kinpair_to_csv

lifestage character. Simulated lifestage of sampling. Either "immature" (sampled at
hatching) or "ovipositional" (sampled as an adult during oviposition - essentially
one lifespan later than ’immature’)

kernelshape numeric. Value of shape parameter for simulated kernel if kernel requires one
(e.g. vgamma kernel).

call call object. Use to pass the system call that led to the generation of this class.
(via sys.call)

model DispersalModel - model information passed from simulation function

Value

Returns a KinPairSimulation Class object with simtype set to ’simple’ and relevant fields in-
cluded.

Examples

kindata <- tibble::tibble(
id1 = c("a", "b", "c"), id2 = c("x", "y", "z"),
distance = c(50, 45, 65), kinship = c("1C", "1C", "1C")

)
KinPairSimulation_simple(kindata,

kinship = "1C", kerneltype = "Gaussian",
posigma = 38, lifestage = "immature"

)

kinpair_to_csv Write KinPairData object to .csv format

Description

This function is part of suite of functions handling file import/export for kinship dispersal objects.
Writing to .csv or .tsv formats strips most KinPairData & KinPairSimulation class metadata and
leaves a delimited file containing ids, kinship category, geographical distance, & x & y coordinates
for each simulated pair. (removes class attributes)

Usage

kinpair_to_csv(x, file, ...)

Arguments

x Object of class KinPairData or KinPairSimulation

file The file path to write to

... Additional arguments to pass to write_csv

Value

Invisibly returns the initial object

kinpair_to_tibble 49

See Also

Other export_functions: kinpair_to_tibble(), kinpair_to_tsv(), write_kindata()

kinpair_to_tibble Extract KinPairData class object to tibble

Description

Extract KinPairData class object to tibble. Strips out most class metadata leaving a dataframe of
disersal simulation data with a column added covering lifestage at sampling.

Usage

kinpair_to_tibble(x)

Arguments

x object of class KinPairData

Value

tibble (class tbl_df)

See Also

Other export_functions: kinpair_to_csv(), kinpair_to_tsv(), write_kindata()

kinpair_to_tsv Write KinPairData object to .tsv format

Description

This function is part of suite of functions handling file import/export for kinship dispersal objects.
Writing to .csv or .tsv formats strips most KinPairData & KinPairSimulation class metadata and
leaves a delimited file containing ids, kinship category, geographical distance, & x & y coordinates
for each simulated pair. (removes class attributes)

Usage

kinpair_to_tsv(x, file, ...)

Arguments

x Object of class KinPairData or KinPairSimulation

file The file path to write to

... Additional arguments to pass to write_tsv

50 kinship

Value

Invisibly returns the initial object

See Also

Other export_functions: kinpair_to_csv(), kinpair_to_tibble(), write_kindata()

kinship Access or assign kinship category of KinPairData class objects

Description

Access or assign kinship category of KinPairData class objects

Usage

kinship(x)

kinship(x) <- value

S4 method for signature 'KinPairData'
kinship(x)

S4 replacement method for signature 'KinPairData'
kinship(x) <- value

Arguments

x object of class KinPairData

value value to assign to slot

KinPairData object of class KinPairData

Value

returns character kinship category of object or KinPairData object with modified kinship cate-
gory

Methods (by class)

• kinship(KinPairData):

• kinship(KinPairData) <- value:

See Also

Other kpdmethods: distances(), lifestage()

kin_pair_data 51

kin_pair_data Make new KinPairData object

Description

Make new KinPairData object

Usage

kin_pair_data(data = NULL, kinship = NULL, lifestage = NULL, cycle = NULL)

Arguments

data tlb_df. Tibble of kinpair distances

kinship character. - one of PO, FS, HS, AV, HAV, GG, 1C, H1C, GAV, HGAV, 1C1,
H1C1, GGG, 2C, H2C & UN.

lifestage character. - one of ’unknown’, ’immature’ or ’ovipositional’, or alternatively a
custom stage that corresponds to a dispersal stage contained in a DispersalModel
object.

cycle non-negative integer of length one or two (here, 1 is equivalent to c(1, 1)). Rep-
resents the number of complete breeding cycles each individual has undergone
before the sampling point, where the time between birth and first reproduction is
coded as ’0’, that between first and second reproduction ’1’, etc. (default 0). If
the first individual was sampled as a juvenile & the second as an adult of equiv-
alent stage, the vector c(0, 1) would be used. In most situations, the default will
be appropriate

Value

returns an object of class KinPairData

Examples

kin_pair_data()

kin_pair_simulation KinPairSimulation

Description

KinPairSimulation

52 kin_pair_simulation

Usage

kin_pair_simulation(
data = NULL,
kinship = NULL,
lifestage = NULL,
simtype = NULL,
kerneltype = NULL,
posigma = NULL,
initsigma = NULL,
breedsigma = NULL,
gravsigma = NULL,
ovisigma = NULL,
customsigma = NULL,
simdims = NULL,
kernelshape = NULL,
cycle = NULL,
call = NULL,
filtertype = NULL,
upper = NULL,
lower = NULL,
spacing = NULL,
samplenum = NULL,
sampledims = NULL,
model = NULL

)

Arguments

data tbl_df. tibble of simulation values

kinship character - one of PO, FS, HS, AV, HAV, GG, 1C, H1C, GAV, HGAV, 1C1,
H1C1, GGG, 2C, and H2C.

lifestage character - one of ’unknown’, ’immature’ or ’ovipositional’

simtype character - simulation type

kerneltype character. - ’Gaussian’, ’Laplace’ or ’vgamma’ (variance-gamma)

posigma numeric - overall value of dispersal sigma (for simple kernel)

initsigma numeric. - value of pre-breeding dispersal sigma (for composite kernel)

breedsigma numeric. - value of breeding dispersal sigma (for composite kernel)

gravsigma numeric. - value of post-breeding dispersal sigma (for composite kernel)

ovisigma numeric. - value of oviposition dispersal sigma (for composite kernel)

customsigma numeric. - vector of named custom dispersal sigmas (for custom kernel)

simdims numeric. - dimensions of sampling area (assumes one side of square)

kernelshape numeric. - value of kernel shape of simulation (if using kernel with shape pa-
rameter e.g. vgamma)

cycle integer - number of breeding cycles sampled individual has survived (for custom
kernel)

lifestage 53

call call. Call to create object

filtertype character. whether the initial sim has been further filtered

upper numeric. - FILTER: upper threshold used

lower numeric. - FILTER: lower threshold used

spacing numeric. - FILTER: spacing used

samplenum numeric. - FILTER: sample number used

sampledims numeric. - FILTER: sample dimensions used

model list - model information if custom simulation used to generate object

Value

returns an object of class KinPairSimulation.

Examples

kin_pair_simulation()

lifestage Access or assign lifestage category of KinPairData class objects

Description

Access or assign lifestage category of KinPairData class objects

Usage

lifestage(x)

lifestage(x) <- value

S4 method for signature 'KinPairData'
lifestage(x)

S4 replacement method for signature 'KinPairData'
lifestage(x) <- value

Arguments

x object with relevant method

value new value to assign

KinPairData object of class KinPairData

Value

returns character lifestage of object or KinPairData object with modified lifestage

54 mentari

Methods (by class)

• lifestage(KinPairData):
• lifestage(KinPairData) <- value:

See Also

Other kpdmethods: distances(), kinship()

mentari Position & kinship information of Aedes aegypti from Mentari Court,
Malaysia

Description

A data file containing the positions & kinship values of 98 Ae. aegypti larval kin pairs collected
between September 19 & October 10, 2017 in Mentari Court (Petaling Jaya), Malaysia.

Usage

mentari

Format

A data frame with 98 rows and 10 variables

id1 id of first individual of kinpair
id2 id of second individual of kinpair
kinship kinship category of the pairing
distance geographical distance between kinpair
x1 relative x coordinate of first individual in metres
y1 relative y coordinate of first individual in metres
x2 relative x coordinate of second individual in metres
y2 relative y coordinate of second individual in metres
lifestage lifestage at time of sampling of kinpair
k_loiselle calculated Loiselle’s k value for kinpair

Details

162 individuals were sourced as larvae from ovitraps placed in eight apartment buildings (in floors
three or four for each), collected over three weeks. Entire larval bodies were extracted and se-
quenced using the double-digest restriction-site- associated DNA sequencing protocol for Ae. ae-
gypti (doi:10.1186/1471216415275. After sequencing & genotyping, Loiselle’s k was used as an
initial estimate of genetic kinship. The program ML-Relate (doi:10.1111/j.14718286.2006.01256.x)
was then used to estimate the pedigree kinships for the FS and HS categories. Following simula-
tion work described in doi:10.1111/17550998.13043 the 1C category was assigned to all remaining
unassigned individuals with a Loiselle’s k of less than 0.06.

https://doi.org/10.1186/1471-2164-15-275
https://doi.org/10.1111/j.1471-8286.2006.01256.x
https://doi.org/10.1111/1755-0998.13043

mount_appdata 55

Value

returns an object of class tbl_df

Source

doi:10.1111/17550998.13043

mount_appdata Mount KinPairData Objects for use in kindisperse app

Description

This function is part of a suite of functions handling the interface between the kindisperse app &
R package. Due to how shiny’s interactive programming works, ordinary objects are not visible to
the reactive functions embedded in the app. The solution implemented here is to construct a custom
environment, env_appdata, that is accessible within the app and outside of it.

This function takes an object of class KinPairData or KinPairSimulation, assigns it an identify-
ing name, and adds it to the app interface environment, making it accessible within the app. Once
added, this object will be accessible under its name from the Load menu of the app. (The app inter-
face uses the same function internally, enabling objects to be passed to the interface from the app
also).

Usage

mount_appdata(x, nm)

Arguments

x An object of class KinPairData or KinPairSimulation

nm character. A name to store the object as

Value

invisibly returns x.

See Also

Other app_ports: display_appdata(), reset_appdata(), reset_tempdata(), retrieve_appdata(),
retrieve_tempdata(), retrieveall_appdata(), unmount_appdata()

Examples

mount_appdata(kin_pair_data(), "mydata")

https://doi.org/10.1111/1755-0998.13043

56 rebase_dims

read_kindata Reads .kindata filetype back to KinPairData or
KinPairSimulation object.

Description

This function is part of suite of functions handling file import/export for kinship dispersal objects.

The custom .kindata format enables complete preservation of KinPairData & KinPairSimulation
formats without any loss of class attributes or metadata - ideal for saving and retrieving simulation
data that is intended for further in-package processing with kindisperse. This function loads a pre-
viously stored object into its original class format.

Usage

read_kindata(file)

Arguments

file Character giving path reference to file with extension .kinpair

Value

Returns either KinPairData or KinPairSimulation object.

See Also

Other import_functions: csv_to_kinpair(), df_to_kinpair(), tsv_to_kinpair(), vector_to_kinpair()

rebase_dims Change the dimensions of a KinPairSimulation Object and shift kin-
pairs so at least one individual is within the area

Description

Change the dimensions of a KinPairSimulation Object and shift kinpairs so at least one individual
is within the area

Usage

rebase_dims(kindist, dims)

Arguments

kindist KinPairSimulation - KinPairSimulation Class Object

dims New site dimensions - either single number (length of side of square) or length
2 vector (lengths of sides x and y of rectangle)

reset_appdata 57

Value

returns a rebased object of class KinPairSimulation with adjusted simulation dimensions

Examples

simobject <- simulate_kindist_simple()

rebase_dims(simobject, c(1, 100))
rebase_dims(simobject, 15)

reset_appdata Reset kindisperse appdata

Description

This function is part of a suite of functions handling the interface between the kindisperse app &
R package. Due to how shiny’s interactive programming works, ordinary objects are not visible to
the reactive functions embedded in the app. The solution implemented here is to construct a custom
environment, env_appdata, that is accessible within the app and outside of it.

When called, this function clears all attached objects from the app interface environment, keeping
it from becoming over-clutttered & taking up space.

Usage

reset_appdata()

Value

No return value, called for side effects

See Also

Other app_ports: display_appdata(), mount_appdata(), reset_tempdata(), retrieve_appdata(),
retrieve_tempdata(), retrieveall_appdata(), unmount_appdata()

Examples

reset_appdata()

58 retrieveall_appdata

reset_tempdata Reset app tempdata (internal mem)

Description

This function is part of a suite of functions handling the interface between the kindisperse app &
R package. Due to how shiny’s interactive programming works, ordinary objects are not visible to
the reactive functions embedded in the app. The solution implemented here is to construct a custom
environment, env_appdata, that is accessible within the app and outside of it.

This function resets the internal tempdata environment used by the kindisperse app, keeping it from
becoming over-cluttered & freeing up space.

Usage

reset_tempdata()

Value

No return value, called for side effects

See Also

Other app_ports: display_appdata(), mount_appdata(), reset_appdata(), retrieve_appdata(),
retrieve_tempdata(), retrieveall_appdata(), unmount_appdata()

Examples

reset_tempdata()

retrieveall_appdata Retrieve all KinPairData objects from appdata (as list)

Description

This function is part of a suite of functions handling the interface between the kindisperse app &
R package. Due to how shiny’s interactive programming works, ordinary objects are not visible to
the reactive functions embedded in the app. The solution implemented here is to construct a custom
environment, env_appdata, that is accessible within the app and outside of it.

This function accesses the app interface environment and retrieves a named list of all objects (typi-
cally of classes KinPairData or KinPairSimulation contained within it, making them accessible
outside of the app). This is used to quickly pass all simulation objects that were saved to this
interface environment while using the app to the regular R environment (after closing the app).

Usage

retrieveall_appdata()

retrieve_appdata 59

Value

Returns a list of objects stored in the appdata environment

See Also

Other app_ports: display_appdata(), mount_appdata(), reset_appdata(), reset_tempdata(),
retrieve_appdata(), retrieve_tempdata(), unmount_appdata()

Examples

mount_appdata(kin_pair_data(), "k1")
mount_appdata(kin_pair_simulation(), "s1")
retrieveall_appdata()

retrieve_appdata Retrieve KinPairData object from appdata (single)

Description

This function is part of a suite of functions handling the interface between the kindisperse app &
R package. Due to how shiny’s interactive programming works, ordinary objects are not visible to
the reactive functions embedded in the app. The solution implemented here is to construct a custom
environment, env_appdata, that is accessible within the app and outside of it.

This function accesses the app interface environment and retrieves an object (typically of class
KinPairData or KinPairSimulation) with the name nm, making it accessible from within our
outside the app. This can be used to load simulation objects that were saved from the interface
while using the app into the regular R environment (after closing the app). (The app uses this
function internally to load objects from the interface into its own internal environment for display
& processing.)

Usage

retrieve_appdata(nm)

Arguments

nm character. Name of item as stored in appdata

Value

Returns KinPairData object accessible by name nm

See Also

Other app_ports: display_appdata(), mount_appdata(), reset_appdata(), reset_tempdata(),
retrieve_tempdata(), retrieveall_appdata(), unmount_appdata()

60 retrieve_tempdata

Examples

mount_appdata(kin_pair_data(), "mydata")

retrieve_appdata("mydata")

retrieve_tempdata Retrieve all tempdata (internal mem) from app (as list)

Description

This function is part of a suite of functions handling the interface between the kindisperse app &
R package. Due to how shiny’s interactive programming works, ordinary objects are not visible to
the reactive functions embedded in the app. The solution implemented here is to construct a custom
environment, env_appdata, that is accessible within the app and outside of it.

This function accesses the app internal environment and retrieves a named list of all objects (typi-
cally of classes KinPairData or KinPairSimulation contained within it, making them accessible
outside of the app). This is used to quickly retrieve all objects stored in the app’s internal memory.
Ordinarily, these would be passed to the interface environment, but this function is useful if the app
crashed and important results were only present in the app’s internal environment.

Usage

retrieve_tempdata()

Value

A list of all KinPairData objects in kindisperse app’s tempdata

See Also

Other app_ports: display_appdata(), mount_appdata(), reset_appdata(), reset_tempdata(),
retrieve_appdata(), retrieveall_appdata(), unmount_appdata()

Examples

retrieve_tempdata()

run_kindisperse 61

run_kindisperse Run kindisperse app

Description

Run kindisperse app

Usage

run_kindisperse()

Value

returns a shiny app instance of kindisperse

sample_kindist Subsample and filter a KinPairSimulation or KinPairData Object

Description

This function takes a pre-existing KinPairSimulation or KinPairData Object with distance and
coordinate data and filters it to simulate various in-field sampling schemes.

Usage

sample_kindist(
kindist,
upper = NULL,
lower = NULL,
spacing = NULL,
n = NULL,
dims = NULL

)

Arguments

kindist KinPairSimulation Class Object

upper numeric - upper cutoff for kin pair distances

lower numeric - lower cutoff for kin pair distances

spacing numeric - spacing between traps (location-independent)

n numeric - number of individuals to keep after filtering (if possible)

dims dimensions to sample within (works with the KinPairSimulation spatial & di-
mension information). Either num (defining a square) or c(num1, num2) (defin-
ing a rectangle).

62 sample_kindist

Details

This function enables the testing of the impact of some basic sampling constraints that might
be encountered in study design or implementation on the effectiveness of the kindisperse es-
timation of intergenerational dispersal. It is typically paired with a simulation function such as
simulate_kindist_composite to generate a ’pure’ dataset, then an estimation function such as
axpermute to examine the impact of filter settings on the ’detected’ value of dispersal sigma. The
filter parameters upper, lower, & spacing all work on the vector of (direction-independent) dis-
tances, & the parameter n enables the random subsampling of n kin dyads. The parameter dims
requires 2D location information for each individual, meaning it can ordinarily only be used with
the KinPairSimulation object (not KinPairData). All filter parameters are stackable.

The upper parameter implements a cutoff for the maximum distance allowable in the dataset. If
set to e.g. 100m, all kin dyads separated by a distance greater than 100m will be excluded from the
filtered dataset. Note that this is a geometry-independent metric; it is naive to the edge effects of an
actual sample site. The lower parameter implements a cutoff for the minimum distance allowable
in the dataset.It operates in the same manner as the previous parameter (in this case, removing
results smaller than a distance threshold)

The spacing parameter as currently implemented takes all distances & alters them to lie at the
midpoint of a bin with width set by this parameter. So if spacing is set to 10 meters, all kin pairs
with distances between 0 and 10m will have their distances rest to 5m, all between 10 & 20 will
be set to 15 m, etc. (quantizing the data). Note that once again this is a geometry-independent
action: These binwiths & ’trap spacing’ are not spatially related to each other like they would be
in a sample site, and there is no simulated dropout of kinpairs too far from a trap. There is also
no geometry-dependent profiling of possible frequency of recaptures across each distance category
(will be implemented in a future version). (this parameter leaves 2D spatial information intact)

The dims parameter defines the dimensions of a rectangle within which both individuals of a kin
dyad will need to lie to be included in the filtered dataset. This measure (which excludes e.g. long-
distance dispersal into & out of the study site) is geometry-dependent, unlike the upper parameter.
This enables the testing of (rectangular) site geometries potentially corresponding to an actual site
(two-dimensional estimates of dispersal such as kindisperse become unreliable as edge effects
significantly reduce the size of either one or both dimensions with respect to the real underlying
dispersal sigma). These site geometries can be entered in a few ways: (a) a single numeric value,
which will be interpreted as the length of the side of a square; (b) a numeric vector of length
two, which will be interpreted as the length & width of the sample site; (c) either of the above
passed to the elongate function, which takes the rectangular site dimensions and alters their aspect
ratio (ratio of length to width) while preserving the underlying area the study site covers. The
implementation of this filtering step permutes the absolute positions of all dyads so that at least
one member of the dyad is in the inial site rectangle, while preserving their relative positions (and
angles) with respect to each other. This means that following this step, the xy coordinate positions
of each individual will not match those contained in the previous round. It also means that the
repeated calling of this function will result in a steady reduction in retained kin dyads due to edge
effects.

The n parameter randomly samples n pairs from the dataset. It is implemented after all other filtering
has taken place, so will only sample surviving individuals A typical strategy for the use of this
functions in simulations would be to simulate an extremely large (e.g. one million pairs) dataset,
then pass it repeatedly to this filter function, with a final sub-sampling step of 1,000 included. This
enables comparisons across sampling conditions (in most cases) regardless of the amount of data
filtered prior to this step.

sampling_stage 63

As this function returns a KinPairData or KinPairSimulation object, the returned object can
be passed back for filtering an arbitrary number of times, or alternatively passed to an estimation
strategy.

This function can be used to test for bias in the results of a close-kin dispersal study that has been
conducted. After the field sampling, kin identification, & sigma calculation steps, use the estimated
sigmas as inputs into simulation functions that are then filtered for size & geometry of the actual
study site (via the dims method). Then pass this filtered dataset back to the sigma-determining
functions. If filtering has resulted in a substantial drop in sigma, the estimate of sigma from the
study site has likely been biased by the site geometry (note that the impact of this is dependent on
the shape of the dispersal kernel - the more leptokurtic (dominated by long-distance dispersal), the
more severe bias will be for a particular sigma and site geometry.

Value

returns an object of class KinPairData or KinPairSimulation containing simulation and filtering
details and a filtered dataset of dispersed individuals.

Examples

simobject <- simulate_kindist_simple(nsims = 100000, sigma = 100, kinship = "PO")

sample_kindist(simobject, upper = 200, lower = 50, spacing = 15, n = 100)

sampling_stage Access sampling stage of DispersalModel or KinPairSimulation
object.

Description

Access sampling stage of DispersalModel or KinPairSimulation object.

Usage

sampling_stage(x)

sampling_stage(x) <- value

S4 method for signature 'DispersalModel'
sampling_stage(x)

S4 replacement method for signature 'DispersalModel'
sampling_stage(x) <- value

S4 method for signature 'KinPairData'
sampling_stage(x)

64 simdims

Arguments

x object of class DispersalModel

value character new sampling stage to assign model

DispersalModel object of class DispersalModel

KinPairData object of class KinPairData

Value

character sampling stage

returns a modified object of class DispersalModel

Methods (by class)

• sampling_stage(DispersalModel):

• sampling_stage(KinPairData):

simdims Access simulation dimensions of KinPairSimulation object

Description

Access simulation dimensions of KinPairSimulation object

Usage

simdims(x)

simdims(x) <- value

S4 method for signature 'KinPairSimulation'
simdims(x)

Arguments

x object of class KinPairSimulation

value new value to assign
KinPairSimulation

object of class KinPairSimulation

Value

numeric vector dimensions of simulated object

returns a modified object of the relevant class

numeric vector simulation dimensions of KinPairSimulation object

simgraph_data 65

Methods (by class)

• simdims(KinPairSimulation):

simgraph_data Simple kin dispersal simulation for graphical display. (returns the
data side as a tibble).

Description

Simple kin dispersal simulation for graphical display. (returns the data side as a tibble).

Usage

simgraph_data(nsims = 1000, posigma = 50, dims = 250, kinship = "2C")

Arguments

nsims Integer. The number of kin dispersal families to simulate.

posigma Integer. The axial deviation of the (simple) parent-offspring dispersal kernel
governing this simulation.

dims Integer. Lays out the length of the sides of a square within which parent individ-
uals are seeded.

kinship Character. Lists the kin category the simulation is reconstructing. One of "PO",
"FS", "HS", "AV", "GG", "HAV", "GGG", "1C", "1C1", "2C", "GAV" (no half-
categories included)

Value

Returns a tibble containing the coordinates of the f0 to f2 generations, as well as coordinates and
distances relative to the ’focus’ kinship categories. (kindist, kinmid, k1 & k2)

See Also

Other simgraph: simgraph_graph()

Examples

simgraph_data(nsims = 100, dims = 1000, kinship = "GAV")

66 simgraph_graph

simgraph_graph Simple kin dispersal simulation for graphical display. (graphs the pre-
existing simulation).

Description

Simple kin dispersal simulation for graphical display. (graphs the pre-existing simulation).

Usage

simgraph_graph(
result,
nsims = 10,
labls = TRUE,
steps = TRUE,
moves = TRUE,
shadows = TRUE,
kinship = NULL,
show_area = TRUE,
centred = FALSE,
pinwheel = FALSE,
scattered = FALSE,
lengths = TRUE,
lengthlabs = TRUE,
histogram = FALSE,
binwidth = posigma/5,
freqpoly = FALSE

)

Arguments

result simulation supplied from simgraph_data() function (tibble)

nsims number of families to graph

labls Logical. Displays labels.

steps Logical. Whether or not to show any details of dispersal movement

moves Logical. Whether or not to show (curved) lines denoting dispersal movement

shadows Logical. Whether or not to show (dashed) shadows tracing dispersal movement.

kinship Character. Lists the kin category the simulation is reconstructing. One of "PO",
"FS", "HS", "AV", "GG", "HAV", "GGG", "1C", "1C1", "2C", "GAV" (no half-
categoris included)

show_area Logical. Whether or not to show the parental seed area as defined in data$dims

centred Logical. Whether or not to centre the coordinates on one individual.

pinwheel Logical. Whether the final graph should be of the pinwheel form.

scattered Logical. Whether the final graph should be of the scatter form.

simtype 67

lengths Logical. Whether or not to show a dashed line connecting the ’focus’ kin to
illustrate overall distance of dispersal.

lengthlabs Logical. Whether to show labels denoting distance of dispersal between focus
kin.

histogram Logical. Whether the final graph should be of the histogram form.

binwidth Numeric. Binwidth for histogram or freqpoly.

freqpoly Logical. Whether the final graph should be of the freqpoly form.

Value

Returns a ggplot object for graphing.

See Also

Other simgraph: simgraph_data()

Examples

simdata <- simgraph_data()
simgraph_graph(simdata)

simtype Access or assign simulation type of KinPairSimulation object

Description

Access or assign simulation type of KinPairSimulation object

Usage

simtype(x)

simtype(x) <- value

S4 method for signature 'KinPairSimulation'
simtype(x)

Arguments

x object of class KinPairSimulation

value new value to assign
KinPairSimulation

object of class KinPairSimulation

68 simulate_kindist_composite

Value

character the kind of simulation stored in the object (simple or composite)

returns a modified object of relevant class

character the kind of simulation stored in the object (simple or composite)

Methods (by class)

• simtype(KinPairSimulation):

See Also

Other kpsmethods: access_sigmas, filter_methods, kernelshape(), kerneltype()

simulate_kindist_composite

Simulate kin dispersal distance pairs with composite sigmas

Description

Simulates intergenerational dispersal made up of composite dispersal stages in a species with a
defined breeding and dispersal structure similar to that of Ae. aegypti - i.e. with initial, breeding,
gravid & ovipositional dispersal phases, approximately non-overlapping life cycles, and defined
sampling points.

Usage

simulate_kindist_composite(
nsims = 100,
initsigma = 100,
breedsigma = 50,
gravsigma = 50,
ovisigma = 25,
dims = 100,
method = "Gaussian",
kinship = "FS",
lifestage = "immature",
shape = 0.5

)

Arguments

nsims (integer) - number of pairs to simulate

initsigma (numeric) - size of pre-breeding (axial) sigma

breedsigma (numeric) - size of breeding (axial) sigma

gravsigma (numeric) - size of post-breeding (axial) sigma

simulate_kindist_composite 69

ovisigma (numeric) - size of oviposition (axial) sigma

dims (numeric) - length of sides of (square) simulated site area

method (character) - kernel shape to use: either ’Gaussian’, ’Laplace’ or ’vgamma’
(variance-gamma)

kinship (character)- kin category to simulate: one of PO, FS, HS, AV, GG, HAV, GGG,
1C, 1C1, 2C, GAV, HGAV, H1C H1C1 or H2C

lifestage (character) lifestage at sample collection: either ’immature’ or ’ovipositional’

shape (numeric) - value of shape parameter to use with ’vgamma’ method. Default 0.5.
Must be > 0. Increment towards zero for increasingly heavy-tailed (leptokurtic)
dispersal

Details

This function is one of a family of functions that implement the core intergenerational dispersal sim-
ulations contained in the kindisperse package. Each of these functions proceeds by the following
steps:

1. identify the pedigree relationship, dispersal phase (FS, HS & PO) and sampling stage that
must be generated;

2. randomly assign a coordinate position to the ’root’ individual within the pedigree (i.e. last
common ancestor of the dyad, inclusive);

3. ’disperse’ both pathways from this root position via the appropriately defined phase disper-
sal (additively via random draws from the underlying statistical model, defined by an axial
standard deviation - sigma);

4. further disperse both phased descendant branches according to the number of realised breeding
dispersal cycles contained in the defining pedigree (additively via random draws from the
chosen underlying statistical model);

5. add displacement caused by dispersal before the sampling point in a similar manner to above,
defining the final positions of the sampled dispersed kin dyads;

6. calculating geographical distances between the resulting dyads.

These simulation functions operate under an additive variance framework: all individual dispersal
events are modeled as random draws from a bivariate probability distribution defined by an axial
standard deviation sigma and (sometimes) a shape parameter. At present, three such distributions
are included as options accessible with the method parameter: the bivariate normal distribution
’Gaussian’, the bivariate Laplace distribution ’Laplace’, and the bivariate variance-gamma distri-
bution ’vgamma’. The Gaussian (normal) distribution enables easy compatibility with the frame-
work under which much population genetic & dispersal theory (isolation by distance, neighbour-
hoods, etc.) have been developed. The Laplace distribution is a multivariate adaptation of the
(positive) exponential distribution, and represents a more ’fat-tailed’ (leptokurtic) disperal situation
than Gaussian. The vgamma distribution is a mixture distribution formed by mixing the gamma dis-
tribution with the bivariate normal distribution. The flexibility of this distribution’s shape parameter
enables us to model arbitrarily leptokurtic dispesal kernels, providing a helpful way to examine the
impacts of (e.g.) long distance dispersal on the overall disperal distribution and sampling decisions.
A vgamma distribution with shape parameter equal to 1 reduces to the bivariate Laplace distribution.
As shape approaches infinity, the vgamma distribution approaches the bivariate normal distribution.
As shape approaches zero, the distribution becomes increasingly leptokurtic.

70 simulate_kindist_custom

The simulate_kindist_composite() function is designed to enable modeling of the composite
dispersal events that occur within the breeding cycle of an organism, and enables the separate treat-
ment of the PO, FS, and HS phases (where, for example, the final distributions of full and half sib-
lings are different in contexts where males mate with multiple females but females primarily carry
the offspring of one male). This function has been designed primarily in the context of modelling
dispersal in the mosquito Ae. aegypti; parameter names and the structure of kinship phases re-
flect a single-generational breeding organism with an initial dispersal phase, a mating phase (where
HS individuals branch), a gravid phase, and an oviposition phase (where FS individuals branch).
The sampling options (’immature’ & ’ovipositional’) also reflect common mosquito trapping meth-
ods (i.e. ovitraps & gravitraps) which both target individuals dispersing in the defined oviposition
phase. This function should be easily adaptable to a vast number of other animals, especially in-
sects, where breeding occurs in one generation and parameters such as this hold. For slightly more
complex scenarios (multiple breeding cycles, differing sample points, more or less dispersal com-
ponents making up a lifespan, different FS/HS branchpoints, etc.), the enhanced capabilities of the
simulate_kindist_custom function may be required.

Following simulation, the results are returned as an object of the specially defined package class
KinPairSimulation, which stores the simulation results along with information about all simula-
tion parameters, and can be further passed to sample filtering & dispersal estimation functions.

Value

returns an object of class KinPairSimulation containing simulation details and a tibble (tab) of
simulation values

See Also

Other simulate_kindist: simulate_kindist_custom(), simulate_kindist_simple()

Examples

simulate_kindist_composite(nsims = 100)
simulate_kindist_composite(

nsims = 10000, initsigma = 20, breedsigma = 30, gravsigma = 30,
ovisigma = 12, dims = 500, method = "Laplace", kinship = "1C", lifestage = "immature"

)

simulate_kindist_custom

Simulate kin dispersal distance pairs with custom species dispersal
models.

Description

Simulates intergenerational dispersal in a species defined by multiple dispersal components across
the breeding cycle, with dispersal, breeding & sampling & basic generational structure custom-
defined by a DispersalModel object.

simulate_kindist_custom 71

Usage

simulate_kindist_custom(
nsims = 100,
model = dispersal_model(init = 100, breed = 50, grav = 50, ovi = 25, .FS = "ovi", .HS =

"breed"),
dims = 100,
method = "Gaussian",
kinship = "FS",
cycle = 0,
shape = 0.5

)

Arguments

nsims (integer) - number of pairs to simulate

model (object of class DispersalModel) - species-specific model of dispersal contain-
ing lifestage, phase & sampling parameters

dims (numeric) - length of sides of (square) simulated site area

method (character) - kernel shape to use: either ’Gaussian’, ’Laplace’ or ’vgamma’
(variance-gamma)

kinship (character)- kin category to simulate: one of PO, FS, HS, AV, GG, HAV, GGG,
1C, 1C1, 2C, GAV, HGAV, H1C H1C1 or H2C

cycle (numeric) - breeding cycle number(s) of dispersed kin to be modeled. Must be a
integer equal to or greater than -1, (-1, 0, 1, 2, ...) or vector of two such integers.
Represents the number of complete breeding cycles each simulated individual
has undergone before the sampling point, where the time between birth and first
reproduction is coded as ’0’, that between first and second reproduction ’1’, etc.
(default 0). If cycle is specially set to ’-1’ this constitutes the sampling of an
individual before it has differentiated (via dispersal) from the parent. Only use
in spp. where there is likely to be a reasonable equivalence between breeding
stages across a lifespan.

shape (numeric) - value of shape parameter to use with ’vgamma’ method. Default 0.5.
Must be > 0. Increment towards zero for increasingly heavy-tailed (leptokurtic)
dispersal

Details

This function is one of a family of functions that implement the core intergenerational dispersal sim-
ulations contained in the kindisperse package. Each of these functions proceeds by the following
steps:

1. identify the pedigree relationship, dispersal phase (FS, HS & PO) and sampling stage that
must be generated;

2. randomly assign a coordinate position to the ’root’ individual within the pedigree (i.e. last
common ancestor of the dyad, inclusive);

72 simulate_kindist_custom

3. ’disperse’ both pathways from this root position via the appropriately defined phase disper-
sal (additively via random draws from the underlying statistical model, defined by an axial
standard deviation - sigma);

4. further disperse both phased descendant branches according to the number of realised breeding
dispersal cycles contained in the defining pedigree (additively via random draws from the
chosen underlying statistical model);

5. add displacement caused by dispersal before the sampling point in a similar manner to above,
defining the final positions of the sampled dispersed kin dyads;

6. calculating geographical distances between the resulting dyads.

These simulation functions operate under an additive variance framework: all individual dispersal
events are modeled as random draws from a bivariate probability distribution defined by an axial
standard deviation sigma and (sometimes) a shape parameter. At present, three such distributions
are included as options accessible with the method parameter: the bivariate normal distribution
’Gaussian’, the bivariate Laplace distribution ’Laplace’, and the bivariate variance-gamma distri-
bution ’vgamma’. The Gaussian (normal) distribution enables easy compatibility with the frame-
work under which much population genetic & dispersal theory (isolation by distance, neighbour-
hoods, etc.) have been developed. The Laplace distribution is a multivariate adaptation of the
(positive) exponential distribution, and represents a more ’fat-tailed’ (leptokurtic) disperal situation
than Gaussian. The vgamma distribution is a mixture distribution formed by mixing the gamma dis-
tribution with the bivariate normal distribution. The flexibility of this distribution’s shape parameter
enables us to model arbitrarily leptokurtic dispesal kernels, providing a helpful way to examine the
impacts of (e.g.) long distance dispersal on the overall disperal distribution and sampling decisions.
A vgamma distribution with shape parameter equal to 1 reduces to the bivariate Laplace distribution.
As shape approaches infinity, the vgamma distribution approaches the bivariate normal distribution.
As shape approaches zero, the distribution becomes increasingly leptokurtic.

The simulate_kindist_custom() function is designed to enable modeling of the composite dis-
persal events that occur within the breeding cycle of an organism, and enables the separate treatment
of the PO, FS, and HS phases in situations where the breeding and dispersal cycle of an organism
is (somewhat more complex that that encountered in organisms such as mosquitoes (i.e. single-
generational breeding organisms with defined sampling points). This function relies on a custom
dispersal model of class DispersalModel defined via parameter model to supply organism-specific
information about dispersal stages (with axial sigmas), FS & HS branch points, and the dispersal
stage at which sampling occurs. Via this model object (or overridden by the cycle parameter) you
can also define the number of breeding cycles each final individual within the close-kin dyad has
passed through before sampling. This is defined as a length one or two non-negative integer (where
a length-one integer of value a is converted to a length two integer of value c(a, a)), where the first
integer defines the number of life cycles passed through by the ’senior’ pedigree member of the
dyad, and the second the number passed through by the ’junior’ member (so the GG phase has a
grandparent as senior, the grandchild as junior, etc. (in practice this distinction is unimportant for
dyads). A cycle number of 0 references an individual that hasn’t lived through an entire breeding
cycle (sampling phase to sampling phase) before being sampled. A value of 1 references an indi-
vidual that has lived through one such cycle (e.g. a female entering her second breeding season,
an ovipositing mosquito (where the oviposition dispersal stage overlaps with the larval dispersal
stage)). A value of 2 references two such cycles, etc. As all cycles are considered equivalent in
the current formulation of this model (whether an individual enters the cycle as a juvenile or as
an adult) care must be taken in applying this system to species where the dispersal behaviour of

simulate_kindist_simple 73

a second cycle individual (i.e. adult) is likely to be substantially different to that of a first cycle
individual (often an immature individual).

This function can only handle one kinship pairing & dispersal mode in the one simulation: where
multiple dispersal pathways lead to the same kinship outcome, each pathway should be simulated
separately, and the resulting distributions combined subsequently.

Following simulation, the results are returned as an object of the specially defined package class
KinPairSimulation, which stores the simulation results along with information about all simula-
tion parameters, and can be further passed to sample filtering & dispersal estimation functions.

Value

returns an object of class KinPairSimulation containing simulation details and a tibble (tab) of
simulation values

See Also

Other simulate_kindist: simulate_kindist_composite(), simulate_kindist_simple()

Examples

custom_dispersal_model <- dispersal_model(a = 10, b = 25, .FS = "b",
.HS = "a", .sampling_stage = "b")
simulate_kindist_custom(nsims = 100, model = custom_dispersal_model,
cycle = c(0, 1), kinship = "FS")

simulate_kindist_simple

Simulate kin dispersal distance pairs with simple sigma

Description

Simulates intergenerational dispersal defined by a simple dispersal sigma (covering the entire life-
cycle) and ignoring phase differences between full & half sibling dispersal categories. Returns an
object of class KinPairSimulation

Usage

simulate_kindist_simple(
nsims = 100,
sigma = 125,
dims = 100,
method = "Gaussian",
kinship = "PO",
lifestage = "immature",
shape = 0.5

)

74 simulate_kindist_simple

Arguments

nsims (integer) - number of pairs to simulate

sigma (numeric) - size of simple (axial) sigma

dims (numeric) - length of sides of (square) simulated site area

method (character) - kernel shape to use: either ’Gaussian’, ’Laplace’ or ’vgamma’
(variance-gamma)

kinship (character)- kin category to simulate: one of PO, FS, HS, AV, GG, HAV, GGG,
1C, 1C1, 2C, GAV, HGAV, H1C or H2C

lifestage (lifestage) lifestage at sample collection: either ’immature’ or ’ovipositional’

shape (numeric) - value of shape parameter to use with ’vgamma’ method. Default 0.5.
Must be > 0. Increment towards zero for increasingly heavy-tailed (leptokurtic)
dispersal

Details

This function is one of a family of functions that implement the core intergenerational dispersal sim-
ulations contained in the kindisperse package. Each of these functions proceeds by the following
steps:

1. identify the pedigree relationship, dispersal phase (FS, HS & PO) and sampling stage that
must be generated;

2. randomly assign a coordinate position to the ’root’ individual within the pedigree (i.e. last
common ancestor of the dyad, inclusive);

3. ’disperse’ both pathways from this root position via the appropriately defined phase disper-
sal (additively via random draws from the underlying statistical model, defined by an axial
standard deviation - sigma);

4. further disperse both phased descendant branches according to the number of realised breeding
dispersal cycles contained in the defining pedigree (additively via random draws from the
chosen underlying statistical model);

5. add displacement caused by dispersal before the sampling point in a similar manner to above,
defining the final positions of the sampled dispersed kin dyads;

6. calculating geographical distances between the resulting dyads.

These simulation functions operate under an additive variance framework: all individual dispersal
events are modeled as random draws from a bivariate probability distribution defined by an axial
standard deviation sigma and (sometimes) a shape parameter. At present, three such distributions
are included as options accessible with the method parameter: the bivariate normal distribution
’Gaussian’, the bivariate Laplace distribution ’Laplace’, and the bivariate variance-gamma distri-
bution ’vgamma’. The Gaussian (normal) distribution enables easy compatibility with the frame-
work under which much population genetic & dispersal theory (isolation by distance, neighbour-
hoods, etc.) have been developed. The Laplace distribution is a multivariate adaptation of the
(positive) exponential distribution, and represents a more ’fat-tailed’ (leptokurtic) disperal situation
than Gaussian. The vgamma distribution is a mixture distribution formed by mixing the gamma dis-
tribution with the bivariate normal distribution. The flexibility of this distribution’s shape parameter
enables us to model arbitrarily leptokurtic dispesal kernels, providing a helpful way to examine the

stages 75

impacts of (e.g.) long distance dispersal on the overall disperal distribution and sampling decisions.
A vgamma distribution with shape parameter equal to 1 reduces to the bivariate Laplace distribution.
As shape approaches infinity, the vgamma distribution approaches the bivariate normal distribution.
As shape approaches zero, the distribution becomes increasingly leptokurtic.

The simulate_kindist_simple() function is the most basic of the simulation functions, ignoring
all information about dispersal phase and treating dispersal with a single sigma corresponding to the
entire lifecycle to breeding of the dispersed individuals. It is useful for exploring simple intergener-
ational dispersal in a stripped back context; for many typical contexts involving complex dispersal
across different phases of the breeding cycle, the other dispersal simulation functions would be
more suitable.

Following simulation, the results are returned as an object of the specially defined package class
KinPairSimulation, which stores the simulation results along with information about all simula-
tion parameters, and can be further passed to sample filtering & dispersal estimation functions.

Value

returns an object of class \code{\link{KinPairSimulation}} containing simulation details and a \code{tibble} (tab) of simulation values

See Also

Other simulate_kindist: simulate_kindist_composite(), simulate_kindist_custom()

Examples

test <- simulate_kindist_simple(nsims = 10, sigma = 50, dims = 1000, method = "Laplace")
simulate_kindist_simple(nsims = 10000, sigma = 75, kinship = "PO", lifestage = "ovipositional")

stages Access breeding cycle stages of DispersalModel object.

Description

Access breeding cycle stages of DispersalModel object.

Usage

stages(x)

S4 method for signature 'DispersalModel'
stages(x)

Arguments

x object of class DispersalModel

DispersalModel object of class DispersalModel

76 tsv_to_kinpair

Value

character ordered vector of custom lifestages contained in the object

Methods (by class)

• stages(DispersalModel):

tsv_to_kinpair Reads .tsv and converts to KinPairData object

Description

This function is part of suite of functions handling file import/export for kinship dispersal objects.

.csv & .tsv reading functions at minimum require the .delim file to contain a column titled ’dis-
tance’ containing distances between kin pairs. It can optionally contain a column of kinship values
’kinship’ as well as a column of lifestage values ’lifestage’. If the file contains more than one value
in the kinship or lifestage columns (e.g. bot ’FS’ and ’HS’) - the corresponding function parame-
ter must be set to pick a corresponding subset of dispersed pairs. where parameters are set in the
absence of file columns, these values are assigned to the returned KinPairData object.

Usage

tsv_to_kinpair(file, kinship = NULL, lifestage = NULL, ...)

Arguments

file The file path to read from

kinship character. kin category to assign or extract from data. one of PO, FS, HS, AV,
GG, HAV, GGG, 1C, 1C1, 2C, GAV, HGAV, H1C , H1C1 or H2C

lifestage character. lifestage to assign or extract from data. one of ’unknown’, ’immature’
or ’ovipositional’.

... additional arguments to pass to read_tsv

Value

Returns object of class KinPairData

See Also

Other import_functions: csv_to_kinpair(), df_to_kinpair(), read_kindata(), vector_to_kinpair()

unmount_appdata 77

unmount_appdata Unmount a KinPairData Object (clear slot from appdata environ-
ment)

Description

This function is part of a suite of functions handling the interface between the kindisperse app &
R package. Due to how shiny’s interactive programming works, ordinary objects are not visible to
the reactive functions embedded in the app. The solution implemented here is to construct a custom
environment, env_appdata, that is accessible within the app and outside of it.

When called, this function clears any objects with names found in the vector nms from the app
interface environment, keeping it from becoming over-cluttered & taking up space.

Usage

unmount_appdata(nms)

Arguments

nms A character vector of names of objects to unmount from the appdata environ-
ment

Value

No return value, called for side effects

See Also

Other app_ports: display_appdata(), mount_appdata(), reset_appdata(), reset_tempdata(),
retrieve_appdata(), retrieve_tempdata(), retrieveall_appdata()

Examples

mount_appdata(kin_pair_data(), "mydata")

unmount_appdata("mydata")

78 visible_stage

vector_to_kinpair Convert vector of kin separation distances to KinPairData class

Description

Function takes at minimum a (numeric) vector of distances between related kinpairs, and returns a
KinPairData object. Optional parameters can assign kinship and lifestage values to the returned
object.

Usage

vector_to_kinpair(vect, kinship = NULL, lifestage = NULL)

Arguments

vect vector of kinpair distances

kinship character or character vector containing kinship categories of kinpairs

lifestage character or character vector containing lifestages of kinpairs

Value

returns valid KinPairData object.

See Also

Other import_functions: csv_to_kinpair(), df_to_kinpair(), read_kindata(), tsv_to_kinpair()

Examples

vector_to_kinpair(1:10, "FS", "immature")

visible_stage Access life stage at which individual is first visible to sampling (i.e.
from which breeding cycles are calculated)

Description

Access life stage at which individual is first visible to sampling (i.e. from which breeding cycles
are calculated)

Usage

visible_stage(x)

S4 method for signature 'DispersalModel'
visible_stage(x)

write_kindata 79

Arguments

x object of class DispersalModel or

DispersalModel object of class DispersalModel

Value

character stage in life cycle at which an individual is assumed to be sampled by default rather
than its parent (anchors the breeding cycle system)

Methods (by class)

• visible_stage(DispersalModel):

write_kindata Write KinPairData or KinPairSimulation object in .kindata for-
mat

Description

This function is part of suite of functions handling file import/export for kinship dispersal ob-
jects. Writing to the custom .kindata format enables complete preservation of KinPairData &
KinPairSimulation formats without any loss of class attributes or metadata - ideal for saving
simulation data that is intended for further in-package processing with kindisperse.

Usage

write_kindata(x, file)

Arguments

x Object of class KinPairData or KinPairSimulation

file The file path to write to. If is doesn’t end it ’.kindata’, this will be added.

Value

Invisibly returns the initial object

See Also

Other export_functions: kinpair_to_csv(), kinpair_to_tibble(), kinpair_to_tsv()

Index

∗ app_ports
display_appdata, 30
mount_appdata, 55
reset_appdata, 57
reset_tempdata, 58
retrieve_appdata, 59
retrieve_tempdata, 60
retrieveall_appdata, 58
unmount_appdata, 77

∗ axial_helpers
axials, 5
axials_add, 6
axials_decompose, 7
axials_subtract, 12
axpermute, 13
axpermute_subtract, 18

∗ axstandard
axials_standard, 8
axpermute_standard, 14

∗ datasets
mentari, 54

∗ export_functions
kinpair_to_csv, 48
kinpair_to_tibble, 49
kinpair_to_tsv, 49
write_kindata, 79

∗ import_functions
csv_to_kinpair, 21
df_to_kinpair, 22
read_kindata, 56
tsv_to_kinpair, 76
vector_to_kinpair, 78

∗ kdclasses
DispersalModel-class, 23
KinPairData-class, 39
KinPairSimulation-class, 41

∗ kpdmethods
distances, 30
kinship, 50

lifestage, 53
∗ kpsmethods

access_sigmas, 3
filter_methods, 32
kernelshape, 38
kerneltype, 38
simtype, 67

∗ simgraph
simgraph_data, 65
simgraph_graph, 66

∗ simulate_kindist
simulate_kindist_composite, 68
simulate_kindist_custom, 70
simulate_kindist_simple, 73

access_sigmas, 3, 34, 38, 39, 68
axials, 5, 6, 8, 12, 13, 19
axials_add, 5, 6, 8, 12, 13, 19
axials_combine, 7
axials_decompose, 5, 6, 7, 12, 13, 19
axials_standard, 8, 16, 17, 40, 43
axials_subtract, 5, 6, 8, 12, 13, 19
axpermute, 5, 6, 8, 12, 13, 19, 62
axpermute_standard, 11, 12, 14, 40, 43
axpermute_subtract, 5, 6, 8, 12, 13, 18

breeding_cycle, 19, 25, 28, 40, 43
breeding_cycle,DispersalModel-method

(breeding_cycle), 19
breeding_cycle,KinPairData-method

(breeding_cycle), 19
breeding_stage, 20
breeding_stage,DispersalModel-method

(breeding_stage), 20
breedsigma (access_sigmas), 3
breedsigma,KinPairSimulation-method

(access_sigmas), 3
breedsigma<- (access_sigmas), 3

check_valid_kinship, 20

80

INDEX 81

check_valid_lifestage, 21
csv_to_kinpair, 21, 22, 40, 56, 76, 78

df_to_kinpair, 22, 22, 40, 56, 76, 78
dispersal_model, 26
dispersal_vector, 24, 28, 29
dispersal_vector,DispersalModel-method

(dispersal_vector), 29
DispersalModel, 19, 20, 28, 29, 34–36, 63,

70, 72, 75
DispersalModel (DispersalModel-class),

23
DispersalModel-class, 23
display_appdata, 30, 55, 57–60, 77
distances, 30, 40, 43, 50, 54
distances,KinPairData-method

(distances), 30

elongate, 31, 62

filter_methods, 5, 32, 38, 39, 68
filtertype, 32
filtertype,KinPairSimulation-method

(filtertype), 32
filtertype<- (filtertype), 32
fs, 25, 34
fs,DispersalModel-method (fs), 34

get_dispersal_model, 35
get_dispersal_model,KinPairSimulation-method

(get_dispersal_model), 35
gravsigma (access_sigmas), 3
gravsigma,KinPairSimulation-method

(access_sigmas), 3
gravsigma<- (access_sigmas), 3

hs, 25, 36
hs,DispersalModel-method (hs), 36

initialize,DispersalModel-method
(DispersalModel-class), 23

initialize,KinPairData-method
(KinPairData-class), 39

initialize,KinPairSimulation-method
(KinPairSimulation-class), 41

initsigma (access_sigmas), 3
initsigma,KinPairSimulation-method

(access_sigmas), 3
initsigma<- (access_sigmas), 3
is.DispersalModel, 36

is.KinPairData, 37
is.KinPairSimulation, 37

kernelshape, 5, 34, 38, 39, 68
kernelshape,KinPairSimulation-method

(kernelshape), 38
kerneltype, 5, 34, 38, 38, 68
kerneltype,KinPairSimulation-method

(kerneltype), 38
kerneltype<- (kerneltype), 38
kin_pair_data, 51
kin_pair_simulation, 51
kinpair_to_csv, 48, 49, 50, 79
kinpair_to_tibble, 49, 49, 50, 79
kinpair_to_tsv, 49, 49, 79
KinPairData, 5, 8, 11, 14, 17, 22, 30, 32, 41,

50, 53, 61, 78
KinPairData (KinPairData-class), 39
KinPairData-class, 39
KinPairSimulation, 3, 8, 11, 14, 17, 32, 34,

35, 38, 57, 61, 63, 64, 67, 70, 73, 75
KinPairSimulation

(KinPairSimulation-class), 41
KinPairSimulation-class, 41
KinPairSimulation_composite, 44
KinPairSimulation_custom, 45
KinPairSimulation_simple, 47
kinship, 31, 40, 43, 50, 54
kinship,KinPairData-method (kinship), 50
kinship<- (kinship), 50
kinship<-,KinPairData-method (kinship),

50

lifestage, 31, 40, 43, 50, 53
lifestage,KinPairData-method

(lifestage), 53
lifestage<- (lifestage), 53
lifestage<-,KinPairData-method

(lifestage), 53
lower (filter_methods), 32
lower,KinPairSimulation-method

(filter_methods), 32
lower<- (filter_methods), 32
lower<-,KinPairSimulation-method

(filter_methods), 32

mentari, 54
mount_appdata, 30, 55, 57–60, 77

ovisigma (access_sigmas), 3

82 INDEX

ovisigma,KinPairSimulation-method
(access_sigmas), 3

ovisigma<- (access_sigmas), 3

posigma (access_sigmas), 3
posigma,KinPairSimulation-method

(access_sigmas), 3
posigma<- (access_sigmas), 3

read_kindata, 22, 56, 76, 78
rebase_dims, 56
reset_appdata, 30, 55, 57, 58–60, 77
reset_tempdata, 30, 55, 57, 58, 59, 60, 77
retrieve_appdata, 30, 55, 57–59, 59, 60, 77
retrieve_tempdata, 30, 55, 57–59, 60, 77
retrieveall_appdata, 30, 55, 57, 58, 58, 59,

60, 77
run_kindisperse, 61

sample_kindist, 32, 40, 43, 61
sampledims (filter_methods), 32
sampledims,KinPairSimulation-method

(filter_methods), 32
sampledims<- (filter_methods), 32
sampledims<-,KinPairSimulation-method

(filter_methods), 32
samplenum (filter_methods), 32
samplenum,KinPairSimulation-method

(filter_methods), 32
samplenum<- (filter_methods), 32
samplenum<-,KinPairSimulation-method

(filter_methods), 32
sampling_stage, 25, 28, 63
sampling_stage,DispersalModel-method

(sampling_stage), 63
sampling_stage,KinPairData-method

(sampling_stage), 63
sampling_stage<- (sampling_stage), 63
sampling_stage<-,DispersalModel-method

(sampling_stage), 63
show,DispersalModel-method

(DispersalModel-class), 23
show,KinPairData-method

(KinPairData-class), 39
show,KinPairSimulation-method

(KinPairSimulation-class), 41
simdims, 64
simdims,KinPairSimulation-method

(simdims), 64

simdims<- (simdims), 64
simgraph_data, 65, 67
simgraph_graph, 65, 66
simtype, 5, 34, 38, 39, 67
simtype,KinPairSimulation-method

(simtype), 67
simtype<- (simtype), 67
simulate_kindist_composite, 43, 62, 68,

73, 75
simulate_kindist_custom, 23–26, 28, 43,

70, 70, 75
simulate_kindist_simple, 43, 70, 73, 73
spacing (filter_methods), 32
spacing,KinPairSimulation-method

(filter_methods), 32
spacing<- (filter_methods), 32
spacing<-,KinPairSimulation-method

(filter_methods), 32
stages, 75
stages,DispersalModel-method (stages),

75

tsv_to_kinpair, 22, 56, 76, 78

unmount_appdata, 30, 55, 57–60, 77
upper (filter_methods), 32
upper,KinPairSimulation-method

(filter_methods), 32
upper<- (filter_methods), 32
upper<-,KinPairSimulation-method

(filter_methods), 32

vector_to_kinpair, 22, 56, 76, 78
visible_stage, 78
visible_stage,DispersalModel-method

(visible_stage), 78

write_kindata, 49, 50, 79

	access_sigmas
	axials
	axials_add
	axials_combine
	axials_decompose
	axials_standard
	axials_subtract
	axpermute
	axpermute_standard
	axpermute_subtract
	breeding_cycle
	breeding_stage
	check_valid_kinship
	check_valid_lifestage
	csv_to_kinpair
	df_to_kinpair
	DispersalModel-class
	dispersal_model
	dispersal_vector
	display_appdata
	distances
	elongate
	filtertype
	filter_methods
	fs
	get_dispersal_model
	hs
	is.DispersalModel
	is.KinPairData
	is.KinPairSimulation
	kernelshape
	kerneltype
	KinPairData-class
	KinPairSimulation-class
	KinPairSimulation_composite
	KinPairSimulation_custom
	KinPairSimulation_simple
	kinpair_to_csv
	kinpair_to_tibble
	kinpair_to_tsv
	kinship
	kin_pair_data
	kin_pair_simulation
	lifestage
	mentari
	mount_appdata
	read_kindata
	rebase_dims
	reset_appdata
	reset_tempdata
	retrieveall_appdata
	retrieve_appdata
	retrieve_tempdata
	run_kindisperse
	sample_kindist
	sampling_stage
	simdims
	simgraph_data
	simgraph_graph
	simtype
	simulate_kindist_composite
	simulate_kindist_custom
	simulate_kindist_simple
	stages
	tsv_to_kinpair
	unmount_appdata
	vector_to_kinpair
	visible_stage
	write_kindata
	Index

